APPENDIX C
Groundwater Resource Assessment by EWLS
Appendixes to this report are not included.
Appendix available on request.
Groundwater Resource Assessment - Construction of Bonaparte Gas Pipeline

for

EcOz Environmental Services Pty Ltd

by

EWL Sciences Pty Ltd

Author: A Puhalovich

Date: December 2006

Project Manager: ____________________________

A Puhalovich

Reviewer: ________________________________

Dr E Ataroon-Leon

General Manager: ____________________________

Dr A R Milnes

Distribution: Client

EWL Sciences

2 Hardcopies and CD Rom

Authors, Library, General Manager
DISCLAIMER

EWL Sciences Pty Ltd ("EWL Sciences") has had to rely on information from other persons in preparing this report (including the party for whom it is prepared) and is not in a position to, and has not, verified the accuracy or completeness of such information. Accordingly, EWL Sciences takes no responsibility for, and assumes no liability in respect of, any information provided by others for the purpose of preparing this report, or any consequences from the use of such information.

This report is prepared only for the person to whom it is addressed and for the purpose for which it is stated to be prepared. This report and any information, statement or conclusion in it is not intended to be, and should not be, relied on or used by any other person or for any other purpose and EWL Sciences accepts no liability for any such reliance or use.
TABLE OF CONTENTS

EXECUTIVE SUMMARY... 1

INTRODUCTION .. 2

1.1 Project Description ... 2
1.2 Study Objective ... 2
1.3 Available Data ... 2

2 GEOLOGY .. 3

2.4 Wadeye Region ... 3
2.5 Peppermint-Nanyin Region .. 3
2.6 Hayes Creek Region ... 3

3 HYDROGEOLOGY .. 5

3.1 Wadeye Region ... 5
3.2 Peppermint-Nanyin Region .. 6
3.3 Hayes Creek Region ... 7
3.4 Bores Located Close to the Pipeline Route .. 7

4 DEVELOPMENT AND USE OF AVAILABLE GROUNDWATER RESOURCES 12

4.1 General Approach .. 12
4.2 APT Water Requirements ... 12
4.3 Strategy .. 12

5 CONCLUSIONS ... 15

6 REFERENCES .. 15

TABLES

Table 1 Summary of Key Bore Drilling and Construction Data .. 10
Table 2 Bore Water Quality Data .. 11
Table 3 Summary of Key Bore Location Information .. 14

FIGURES

Figure 1 Simplified Regional Geology (adapted from Haig & Matsuyama, 2003) 4
Figure 2 Regional Water Availability (adapted from Haig & Matsuyama, 2003) 5
Figure 3 Locations of Community/Outstation Bores in the Wadeye Region 6
Figure 4 Bores located within 10 km of the pipeline route .. 8
Figure 5 Key Groundwater Bores (located within 10 km of the pipeline route) 9

APPENDICES

APPENDIX A Summary Details of Bore Completion Details
APPENDIX B Bore Completion Reports for Proposed Bores
APPENDIX C APT Water requirements
EXECUTIVE SUMMARY

Australian Pipeline Trust (APT) is proposing to construct and operate the Bonaparte Gas Pipeline (BGP) from the Blacktip gas plant facility at Wadeye to the Amadeus Basin - Darwin Gas Pipeline (ADP) at Ban Ban Springs, located 275 km to the north-east. Pipeline construction is likely to commence in 2008 from Ban Ban Springs.

Water is required for two purposes:

1. Potable water is needed for up to two construction camps, estimated at 75 kL/day (300 persons using 250 L/day/person); and

2. Non-potable water is needed for hydrotesting of the pipeline and as dust control/track maintenance.

A geological and hydrogeological data evaluation has been undertaken to determine groundwater availability along the pipeline route and develop a strategy for the provision of water supplies.

Data have been collated and assessed to determine the adequacy of groundwater resources along the route of the proposed pipeline. Groundwater availability along the proposed pipeline route has been segmented into four zones, reflecting the variability of groundwater conditions.

The assessment has identified bores that should provide sufficient groundwater to meet APT’s water requirements along most of the length of the proposed pipeline.

Site reconnaissance and specific bore testing will be required east of Palumpa (RN31978) to confirm bore access, bore condition, groundwater sustainability and water quality.
INTRODUCTION

1.1 PROJECT DESCRIPTION

Australian Pipeline Trust (APT) is proposing to construct and operate the Bonaparte Gas Pipeline (BGP) from the Blacktip gas plant facility at Wadeye to the Amadeus Basin - Darwin Gas Pipeline (ADP) at Ban Ban Springs, located 275 km to the north-east. The BGP will transport treated gas from the gas plant to supply fuel for Power and Water Corporation's electricity generation facilities. ENI Australia (ENI) is proposing to bring gas and condensate onshore from the Blacktip Gas Field via a pipeline to the gas plant facility, located approximately 12 km west of Wadeye (Port Keats).

Construction is likely to commence from the Ban Ban Springs end in 2008. Water is required for two purposes:

1. potable water is required for up to two construction camps, estimated at 75 kL/day (300 persons using 250 L/day); and
2. non-potable water is required for hydrotesting of the pipeline as well as dust control/track maintenance.

Hydrotest water (about 5 ML, pumped in at 40 L/s) would initially be required near Ban Ban springs. Depending on the availability of water along the pipeline route, it is possible that the initial volume could be moved westward through the pipeline for re-use. Dust control/track maintenance would require about 100 kL/day (ideally available every 20 km or less).

The NT Government has indicated that groundwater resources in the Wadeye area require a high level of protection, given that groundwater quality is good and because they are utilised by the Wadeye community and surrounding outstations.

1.2 STUDY OBJECTIVE

Determine water availability along the pipeline route and develop a strategy for the provision of water supplies.

1.3 AVAILABLE DATA

The following data were collated and assessed:

- bore testing reports;
- drilling data / bore completion reports;
- regional geology & hydrogeology maps;
- NRETA reports; and
- groundwater levels and water quality data.

With the exception of groundwater level data from NT Government monitoring bores, there are no data available that confirm the long-term sustainability of groundwater resources.
2 GEOLGY

2.4 WADEYE REGION

The key geological/aquifer unit in the Wadeye region is the Hyland Bay Formation, which dips to the west and is of Upper Permian age (Laws & Brown, 1976). The unit is about 400 m thick and was deposited in a deltaic environment during a period of marine transgression. The extent of the unit is shown in dark green in Figure 1.

Overlying the Hyland Bay Formation are undifferentiated sediments that have been heavily leached/altered to form a blanket cover of laterite and laterised clays and sandstones (Jamieson, 1991).

The uppermost sediments (in the Hyland Bay Formation) comprise weathered, fine to coarse, clean to clayey sandstone and rounded quartz gravels with interbeds of clay and siltstone. Fracturing within the Hyland Bay Formation sedimentary deposits has resulted in the development of secondary permeability and highly permeable dual-porosity aquifers. These aquifers have been intersected by a number of bores and used as a water supply source by the Wadeye community (Jamieson, 1991). The aquifers are semi-confined to semi-unconfined, with pumping typically resulting in a delayed yield from surrounding sediments (Jamieson, 1991).

The lowermost sediments comprise pink to dark grey clays which are at least 50 m thick. This clay unit sub-crops immediately to the east of Wadeye.

2.5 PEPPIKENARTI-NAUYU REGION

The oldest geological units in the region are Archaean and Early Proterozoic igneous and metamorphic, undifferentiated rocks shown in orange in Figure 1. Mid-Proterozoic siltstones, sandstones and dolomites overlie these rocks. Both these units form the escarpment rocks.

Overlying the Proterozoic sediments are Cambrian Limestone units of the Daly River Group, shown in purple in Figure 1.

2.6 HAYES CREEK REGION

The geology of the Hayes Creek region is characterized by the presence of a complex of Proterozoic rocks of the Pine Creek Geosyncline and Archaean basement. Rocks include sandstones and siltstones of the Tolmer Group and greywackes, siltstones and shales of the Burrell Creek and Wildman Siltstone and siltstones, cherts and shales of the Mount Bonnie and Koolpin Formations (based on the 1:250,000 Hydrogeology of the Pine Creek Region map).

South of Hayes Creek, basin limestone units (Ooloo and Tindal Limestone) of the Daly River Group are present.
Figure 1 - Simplified Regional Geology (adapted from Haig & Matsuyama, 2003)
3 HYDROGEOLOGY

3.1 WADEYE REGION

The hydrogeology of the Wadeye region is well understood. Long-term groundwater pumping and monitoring data at Wadeye and surrounding communities has enabled a groundwater map of bore supplies to be developed (Figure 2).

The Hyland Bay Formation, shown as dark blue in Figure 2, contain aquifers where there is a ‘good chance’ of drilling a bore that yields 5 L/s and a ‘moderate chance’ of drilling a bore that yields 10 L/s. However, bore yields are very inconsistent and vary between 0.5 and 22 L/s (Haig and Matsuyama, 2003). These aquifers provide groundwater for the community of Wadeye (1,300 kL/day) and the outstations of Ditchi, Nangu, Kutuntiga, Ngardiniitchi, Old Mission, Kuy and Yedderr (Haig and Matsuyama, 2003). Water quality in these aquifers is usually good.

Water supplies for the Wadeye community are sourced from production bores 70/2, 70/3 and 78/1 and the NT Government (Department of Natural Resources, Environment and the Arts, NTG) currently monitors WR90/1 to 6 and WR90/8-14, WR90/4, 5, 9, 10 & 11 (Figure 3). Based on hydrograph data, groundwater levels are typically less than 5 m from surface (i.e. shallow) and show wet-dry season fluctuations of around 2 to 3 m each year. A summary of bore completion information is contained in Appendix A.

![Regional Aquifers Map](image)

Figure 2 - Regional Water Availability (adapted from Haig & Matsuyama, 2003)
3.2 **PEPPIMENARTI-NAUIIU REGION**

With the exception of areas where Archaean basement outcrop (shown in yellow in Figure 2), groundwater yields from bores are highly variable. The *medium green* areas immediately to the east of Wadeye represent areas where low yielding supplies (of up to 1 L/s) can be obtained from shallow sandstone and siltstone aquifers (eg RN023256, RN020228, RN033300 – refer to Appendix A).

The *pale green* and *pale blue* regions are areas where bores are likely to encounter aquifers if fractured rocks are intersected, with groundwater yields of between 0.5 and 10 L/s typical (eg RN032999, RN026355 – refer to Appendix A).
3.3 **HAYES CREEK REGION**

According to the 1:250,000 *Hydrogeology of the Pine Creek Region* map, high yielding groundwater bores have been constructed in fractured siltstones, cherts and shales of the Mount Bonnie and Koolpin Formations and adjacent chert/tuffaceous deposits, in the South Howley and Cosmo Howley mining areas north-west of Hayes Creek. For example yields of 5.0, 10.1 and 6.25 L/s at bores RN022642, RN020788 and RN026241, respectively (Appendix A).

Lower yielding bores have also been constructed to the east of Hayes Creek in siltstones and shales of the Burrell Creek and Wildman Siltstone formations. For example yields of 1.25 and 3.0 L/s at bores RN003842 and RN025004, respectively (Appendix A).

Based on a search of the NRETA reports database, and with the exception of an early report by Verma (1989), there are no hydrogeological reports available describing hydrogeological conditions in the Hayes Creek region.

3.4 **BORES LOCATED CLOSE TO THE PIPELINE ROUTE**

Bores situated within 10 km of the proposed pipeline route are presented in Figure 4. Summary construction details for these bores are contained in Appendix A. It shows bores are concentrated at Wadeye, Palumpa and Nauiyu and Hayes Creek communities.

Data indicate that there are significant numbers of groundwater bores located close to the proposed pipeline route. However, the absence (mostly) of bore testing and/or ongoing monitoring data means that it is difficult to determine the likely bore yields and performance of the bores over time. Site reconnaissance together with local knowledge will be required to confirm that the bores can be accessed and utilised.

Bores located within 10 km of the pipeline route, which are likely to intersect aquifers and are located at regular intervals along the pipeline route, are presented in Figure 5. The bore construction details and water quality data are contained in Table 1 and Table 2, respectively.

Although there are two boreholes that are characterised by mildly low pH (ie 4.5 and 5.5), overall pH values are circum-neutral with low electrical conductivity and solute concentrations. These data indicate that groundwater from bores along the proposed pipeline route would appear to be of potable quality, although this needs to be confirmed.
Four zones of similar hydrogeological conditions and groundwater availability have been identified (Figure 5). A summary of key information, for bores proposed to be used, is contained in Table 3.

Zone 1: Wadeye to Palumpa

High yielding bores RN31978, RN31979 and RN31980 were recently constructed by the Department of Planning & Infrastructure – Construction Division (DPI). Airlift data (Table 3) indicate that groundwater supplies should be more than adequate to meet APT requirements along this section of the pipeline.

Zone 2: Palumpa to Emu Point (outstation)

Low to moderate yielding ‘community’ bores (RN23285, RN27325 and RN32939) exist in this zone. These bores screen Proterozoic sandstones, siltstones and quartzites.

Zone 3: Emu Point (outstation) to Nauyiu

Although there are few bores in this zone, a low yielding community bore has been identified at Kellerk Outstation (RN33300). Other bores (RN20651-3) have been identified but bore construction and groundwater yield data are unavailable. Bore RN33300 intersect Proterozoic schistose and gneissic rocks including quartz and quartzite.

Zone 4: Nauyiu to Hayes Creek

Moderate to high yielding bores (RN28238, RN05921, RN005849 and RN001434) were identified within this zone. Other bores at Brocks Creek and Cosmo Howley may also be used (eg RN25519, RN25523 and RN22642, Appendix A).
Figure 5 - Key Groundwater Bores (located within 10 km of the pipeline route)
<table>
<thead>
<tr>
<th>BORE NO.</th>
<th>BORE NAME</th>
<th>EASING</th>
<th>NORTHING</th>
<th>LOCALITY</th>
<th>GENERAL LITHOLOGY</th>
<th>CASING</th>
<th>SWL (m)</th>
<th>VELD (L/s)</th>
<th>DRILL DEPTH (m)</th>
<th>BORE DEPTH (m)</th>
<th>COMPLETED RATE</th>
<th>Test Pumping/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-14</td>
<td>ASH MC DONALD HVAE</td>
<td>255.33</td>
<td>919.50</td>
<td>VIC</td>
<td>NA</td>
<td>76.0</td>
<td>3.6</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016-15</td>
<td>CLYDE BORE & O.R. TIPPERARY STATION</td>
<td>250.60</td>
<td>915.20</td>
<td>VIC</td>
<td>NA</td>
<td>70.0</td>
<td>3.8</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016-16</td>
<td>R.S. DRICT DICTIFIC RIFTERARY STATION</td>
<td>245.50</td>
<td>910.50</td>
<td>VIC</td>
<td>NA</td>
<td>65.0</td>
<td>3.8</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016-17</td>
<td>T.M.E. MC DONALD HVAE</td>
<td>250.50</td>
<td>914.50</td>
<td>VIC</td>
<td>NA</td>
<td>75.0</td>
<td>3.8</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016-18</td>
<td>R.S. DRICT DICTIFIC RIFTERARY STATION</td>
<td>245.50</td>
<td>910.50</td>
<td>VIC</td>
<td>NA</td>
<td>65.0</td>
<td>3.8</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016-19</td>
<td>R.S. DRICT DICTIFIC RIFTERARY STATION</td>
<td>245.50</td>
<td>910.50</td>
<td>VIC</td>
<td>NA</td>
<td>65.0</td>
<td>3.8</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2016-20</td>
<td>R.S. DRICT DICTIFIC RIFTERARY STATION</td>
<td>245.50</td>
<td>910.50</td>
<td>VIC</td>
<td>NA</td>
<td>65.0</td>
<td>3.8</td>
<td>9.0</td>
<td>50.0</td>
<td>50.0</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Notes:
1. No geophysical on all bores
2. Borehole currently not in service
3. All bores located in Zone 52, datum is Madgwick

COMMERCIAL-IN-CONFIDENCE

Prepared for: EoE Environmental Services
Prepared by: EWL Sciences Pty Ltd

December 2006
Job No 2-141
Table 2 - Bore Water Quality Data

<table>
<thead>
<tr>
<th>BORE NO.</th>
<th>BORE NAME</th>
<th>Date Sampled</th>
<th>Field pH</th>
<th>Field EC</th>
<th>pH</th>
<th>TDS</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe</th>
<th>Total Hardness (as CaCO₃)</th>
<th>Total Alkalinity (as CaCO₃)</th>
<th>Silica (mg/L)</th>
<th>Cl</th>
<th>SO₄</th>
<th>Bicarbonate (HCO₃⁻)</th>
<th>F</th>
<th>NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN630182</td>
<td>190 PAPANGALO QFN</td>
<td>20-Nov-84</td>
<td>6.20</td>
<td>59.2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>24</td>
<td>38</td>
<td>24</td>
<td>27</td>
<td>2</td>
<td>4</td>
<td>46</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RN630195</td>
<td>190 PAPANGALO QFN</td>
<td>15-Dec-84</td>
<td>6.13</td>
<td>10.1</td>
<td>75</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>7</td>
<td>24</td>
<td>38</td>
<td>24</td>
<td>27</td>
<td>2</td>
<td>4</td>
<td>46</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>RN630196</td>
<td>WIR017 REMARLUK WADEYE</td>
<td></td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN630197</td>
<td>WIR017 REMARLUK WADEYE</td>
<td></td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN630198</td>
<td>WIR017 REMARLUK PORT HEAD</td>
<td>16-June-81</td>
<td>6.10</td>
<td>3.01</td>
<td>35</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td><1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RN630199</td>
<td>WIR017 REMARLUK PORT HEAD</td>
<td>25-June-81</td>
<td>7.00</td>
<td>3.2</td>
<td>4.5</td>
<td>4</td>
<td>3</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td><1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RN630200</td>
<td>201 PORT HEAD BORE TESTER</td>
<td></td>
<td>not available</td>
<td>not available</td>
<td>not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN630201</td>
<td>201 PORT HEAD BORE TESTER</td>
<td></td>
<td>should become available once bore water sampled and tested</td>
<td>not available</td>
<td>not available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RN630202</td>
<td>TBA</td>
<td>14-Oct-01</td>
<td>7.54</td>
<td>1.78</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td><1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RN630203</td>
<td>TBA</td>
<td>23-Oct-01</td>
<td>7.00</td>
<td>2.72</td>
<td>6.90</td>
<td>277</td>
<td>197</td>
<td>21</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>97</td>
<td>141</td>
<td>52</td>
<td>1</td>
<td>7</td>
<td>172</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>RN630204</td>
<td>TBA</td>
<td>19-Oct-01</td>
<td>8.00</td>
<td>2.25</td>
<td>7.10</td>
<td>239</td>
<td>152</td>
<td>28</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>93</td>
<td>118</td>
<td>40</td>
<td>8</td>
<td>7</td>
<td>144</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
4 DEVELOPMENT AND USE OF AVAILABLE GROUNDWATER RESOURCES

4.1 GENERAL APPROACH

The general approach to the development and use of available groundwater resources is to:

1. Identify existing groundwater bores that are located in close proximity to the proposed pipeline and have reasonable yields.

2. Conduct site reconnaissance to confirm access to the bores and bore condition. Consultations with bore owners to seek permission to draw water is required.

3. Bores which require specific hydraulic testing to ascertain more accurately hydrogeological properties, and hence confirm water supply rates, will need to be identified. Testing at some sites will need to be implemented to provide APT with a degree of assurance of supply availability.

4. In the event of insufficient groundwater resources at key points along the route, new locations for drilling investigations would be suggested.

4.2 APT WATER REQUIREMENTS

According to APT’s water requirements, described in detail in Appendix C, pipeline construction water is required such that...“The water sources should be relatively close to the construction area if possible, and be available at intervals not exceeding 40 kilometers... This yields a daily construction water requirement in the range of 240 cubic meters.” In addition, there is a requirement for camp (potable) water... “These figures yield a camp water demand in the range of at least 50 and possibly 75 cubic meters of water per day. Current planning indicates that only two main camp locations will be required.”

4.3 STRATEGY

Using the available hydrogeological data and bore information, four zones of groundwater availability have been identified (Figure 5). A summary of key information, for bores proposed to be used, is contained in Table 3.

A proposed strategy for each zone is provided below:

Zone 1: Wadeye to Palumpa

APT should contact DPI (William Moodie ph 8999 4706) and formally request permission to use the high yielding bores RN31978, RN31979 and RN31980.

Other community water supply bores at Wadeye and Palumpa could also be used but would require negotiation with the respective community councils.

Zone 2: Palumpa to Emu Point (outstation)

On-site evaluation of bore access, condition and actual community use of bores RN23285, RN27325 and RN32939 is needed. Consent to use the bores will need to be negotiated with the Thanarrurr Regional Council (Geoff Thorne Municipal Services ph 8978 1088).

Field testing of these bores should also be undertaken to confirm water quality and that groundwater yields have not changed since initial construction.
Turkey’s nest dams will need to be constructed to store water given that bore yields seem to be less than APT’s water requirements.

Zone 3: Emu Point (outstation) to Nauyiu
Site reconnaissance is required to determine accessibility and condition of the identified bores (RN33300 and bores RN20651-3). If these bores are available, bore testing should be undertaken, otherwise access to water from production bores at Nauyiu Community would need to be negotiated with Thanarrurr Regional Council.

Turkey’s nest dams will also need to be constructed to store water, given that bore yields are likely to be less than APT’s water requirements.

Zone 4: Nauyiu to Hayes Creek
Moderate to high yielding bores (RN28238, RN05921, RN005849 and RN001434) were identified within this zone. These bores are mostly privately owned. Bores RN28238, RN05921 and RN005849 are situated on the Tipperary Station. Use of these bores would need to be negotiated with management (John Vereker/Rodney Illingworth ph 8978 2433). Site reconnaissance to inspect the condition of bores and access is required. Use of this bore or others on Department of Defence property would need to be negotiated with Philip Wright (Regional Development) or Ros Lague (Manager, Technical Services).
Table 3- Summary of Key Bore Location Information

<table>
<thead>
<tr>
<th>BORE NO.</th>
<th>GENERAL LOCALITY</th>
<th>APPROX. PIPELINE CHAINAGE (KM)</th>
<th>APPROX. MINIMUM DISTANCE FROM BORE TO PIPELINE (KM)</th>
<th>AIRLIFT YIELD (L/s)</th>
<th>RECOMMENDED (MAXIMUM) PUMPING RATE (L/s)</th>
<th>BORE OWNERSHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN031980</td>
<td>WADEYE</td>
<td>15.5</td>
<td><1</td>
<td>5.0</td>
<td>NA</td>
<td>Dept. of Planning & Infrastructure (Construction Division)</td>
</tr>
<tr>
<td>RN031979</td>
<td>MIDWAY WADEYE-PALUMPA</td>
<td>29.6</td>
<td>4</td>
<td>5.0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RN031978</td>
<td>PALUMPA</td>
<td>39.4</td>
<td><1</td>
<td>8.0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RN023285</td>
<td>PAPANGALA OUTSTATION</td>
<td>62.7</td>
<td><1</td>
<td>2.0</td>
<td>1.5</td>
<td>Thanarrur Regional Council</td>
</tr>
<tr>
<td>RN027325</td>
<td>NEMARLUK</td>
<td>71.8</td>
<td>3</td>
<td>0.7</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>RN032939</td>
<td>EMU POINT OUTSTATION</td>
<td>97.2</td>
<td>7</td>
<td>1.3</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>RN033300</td>
<td>KELLERK OUTSTATION</td>
<td>109.2</td>
<td>7</td>
<td>0.5</td>
<td>0.7</td>
<td>Tipperary Station</td>
</tr>
<tr>
<td>RN028238</td>
<td>TIPPERARY STATION DALY R. 507</td>
<td>156.3</td>
<td>2</td>
<td>3.0</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RN005921</td>
<td>TIPPERARY STN DALY RIVER 507</td>
<td>176.8</td>
<td>7</td>
<td>25</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RN005849</td>
<td>CLAREY BORE D.B. NO.1 TIPPERY</td>
<td>198.6</td>
<td>8</td>
<td>8.8</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>RN001434</td>
<td>ARMY NO:312 FENTON AIRSTRIP</td>
<td>217.6</td>
<td><1</td>
<td>2.5</td>
<td>NA</td>
<td>Department of Defence</td>
</tr>
</tbody>
</table>

* Possibly also 20651-3, site reconnaissance required
5 CONCLUSIONS

To permit construction of the Bonaparte Gas Pipeline, available geological and hydrogeological data have been collated and assessed to determine the adequacy of groundwater resources along the route of the proposed pipeline.

The assessment has resulted in the identification of bores that should provide sufficient groundwater supplies to meet APT’s water requirements along most of the length of the proposed pipeline.

Site reconnaissance and specific bore testing will be required east of Palumpa (RN31978) to confirm bore access, bore condition, groundwater sustainability and water quality.

6 REFERENCES

<table>
<thead>
<tr>
<th>BORE NO.</th>
<th>BORE NAME</th>
<th>EASTING</th>
<th>NORTHING</th>
<th>LOCALITY</th>
<th>SWL (m)</th>
<th>YIELD (L/s)</th>
<th>COMPLETED DEPTH (m)</th>
<th>COMPLETED DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R000334</td>
<td>RAAF NO.345 109 MILE STUART H/WAY</td>
<td>760330</td>
<td>8496360.9</td>
<td>109 MILE TIPPERARY 5170</td>
<td>18.2</td>
<td>0.38</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R001192</td>
<td>HOMESTEAD WELL BAN BAN SPRINGS</td>
<td>771179.8</td>
<td>8519660.8</td>
<td>BAN BAN SPRGS MCKINLAY RIV 5271</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R005972</td>
<td>HOMESTEAD BORE ADV.13/67 BAN BAN SPRINGS</td>
<td>771179.8</td>
<td>8519660.8</td>
<td>BAN BAN SPRGS MCKINLAY RIV 5271</td>
<td>6.3</td>
<td>1.2</td>
<td>21.3</td>
<td>19670901</td>
</tr>
<tr>
<td>R007715</td>
<td>HOMESTEAD NO.2 BAN BAN SPRINGS</td>
<td>771179.8</td>
<td>8519660.8</td>
<td>BAN BAN SPRGS MCKINLAY RIV 5271</td>
<td>6.4</td>
<td>11.9</td>
<td>30.5</td>
<td>19710725</td>
</tr>
<tr>
<td>R006198</td>
<td>NO.3 ADV.15/67 BAN BAN SPRINGS</td>
<td>771829.8</td>
<td>8515360.8</td>
<td>BAN BAN SPRGS MCKINLAY RIV 5271</td>
<td>21.3</td>
<td>0.8</td>
<td>31.7</td>
<td>19670901</td>
</tr>
<tr>
<td>R025496</td>
<td>WB 3 BAN BAN SPRINGS</td>
<td>771729.8</td>
<td>8513660.8</td>
<td>BAN BAN SPRGS</td>
<td>19</td>
<td>1</td>
<td>42</td>
<td>19971117</td>
</tr>
<tr>
<td>R024132</td>
<td>MAGNUM RESOURCES LTD BAN BAN SPRINGS</td>
<td>771429.8</td>
<td>8512660.8</td>
<td>BAN BAN SPRINGS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19950926</td>
</tr>
<tr>
<td>R007714</td>
<td>A 69/71 BAN BAN SPRINGS</td>
<td>767729.9</td>
<td>8515710.8</td>
<td>BAN BAN SPRINGS BATECHOR 5171</td>
<td>6.1</td>
<td>5</td>
<td>38.1</td>
<td>19710729</td>
</tr>
<tr>
<td>R026323</td>
<td>BRITANIA BAN BAN SPRINGS STN</td>
<td>764479.9</td>
<td>8511410.8</td>
<td>BAN BAN SPRINGS BATECHOR 5171</td>
<td>10.8</td>
<td>1.5</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>R026329</td>
<td>T. STARR BAN BAN SPRINGS STN</td>
<td>768379.8</td>
<td>8523660.7</td>
<td>BAN BAN SPRINGS BATECHOR 5171</td>
<td>3.8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>R026330</td>
<td>MAGNUM RESOURCES BAN BAN SPRINGS STN</td>
<td>771729.8</td>
<td>8513660.8</td>
<td>BAN BAN SPRINGS BATECHOR 5171</td>
<td>0</td>
<td>0</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>R020018</td>
<td>SITE A/79 BAN BAN SPRINGS</td>
<td>771829.8</td>
<td>8515460.8</td>
<td>BAN BAN SPRINGS P.L.631</td>
<td>20</td>
<td>0.56</td>
<td>52</td>
<td>19791107</td>
</tr>
<tr>
<td>R030684</td>
<td>WILD HORSE 4/96</td>
<td>762479.9</td>
<td>8526960.7</td>
<td>BAN BAN SPRINGS STATION</td>
<td>0</td>
<td>3</td>
<td>21.1</td>
<td>19960715</td>
</tr>
<tr>
<td>R030685</td>
<td>HOWLEY 5/96</td>
<td>756279.9</td>
<td>8515210.8</td>
<td>BAN BAN SPRINGS STATION</td>
<td>0</td>
<td>1.5</td>
<td>26.5</td>
<td>19960717</td>
</tr>
<tr>
<td>R026329</td>
<td>STARR T BAN BAN SPRINGS STN</td>
<td>770879.8</td>
<td>8518760.8</td>
<td>BAN BAN SPRINGS STN BATECHOR</td>
<td>10.1</td>
<td>0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>R026252</td>
<td>WHR 15 SITE 8 BAN BAN STN ROCHE BROS PTY LTD</td>
<td>774279.8</td>
<td>8514410.8</td>
<td>BAN BAN STN MCKINLAY RIVER</td>
<td>17.4</td>
<td>6.5</td>
<td>46</td>
<td>19880920</td>
</tr>
<tr>
<td>R024149</td>
<td>NORTHERN GOLD BRIDGE CK</td>
<td>751330</td>
<td>8513310.7</td>
<td>BRIDGE CK</td>
<td>12</td>
<td>0.7</td>
<td>0</td>
<td>19850904</td>
</tr>
<tr>
<td>R025574</td>
<td>MBE NC 1 BRIDGE CREEK GOLD MINE</td>
<td>751110</td>
<td>8513340.7</td>
<td>BRIDGE CK MINE BATECHOR 5171</td>
<td>5.4</td>
<td>3</td>
<td>43</td>
<td>19871001</td>
</tr>
<tr>
<td>R025575</td>
<td>MBE NC 1A BRIDGE CREEK GOL MINE</td>
<td>751030</td>
<td>8513410.7</td>
<td>BRIDGE CK MINE BATECHOR 5171</td>
<td>7.5</td>
<td>1.4</td>
<td>43</td>
<td>19871001</td>
</tr>
</tbody>
</table>

COMMERCIAL-IN-CONFIDENCE

Prepared for: EoOs Environmental Services
Prepared by: EWL Sciences Pty Ltd
December 2006
Job No 2-343