Transport fuel emissions

The following formula has been used to estimate greenhouse gas emissions from the combustion of diesel oil used for transport energy purposes.

$$E_{ij} = \frac{Q_i \times EC_i \times EF_{ijoxec}}{1\ 000}$$

where:

 E_{ij} is the emissions of gas type (j), carbon dioxide, methane or nitrous oxide, from fuel type (i) (CO₂-e tonnes).

 Q_i is the quantity of fuel type (kilolitres) combusted for transport energy purposes

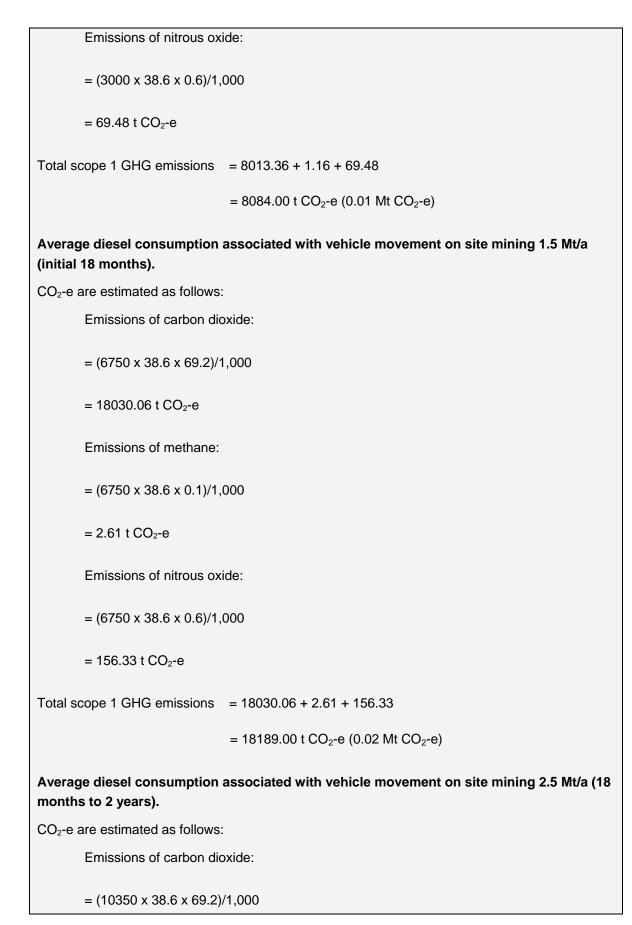
 EC_i is the energy content factor of fuel type (i) (gigajoules per kilolitre or per cubic metre) used for transport energy purposes

 EF_{ijoxec} is the emission factor for each gas type (j) (which includes the effect of an oxidation factor) for fuel type (i) (kilograms CO₂-e per gigajoule) used for transport energy purposes

Fuel combusted	Energy content factor (GJ/kL unless otherwise indicated) (<i>EC_i</i>)	unless ise ise KG CO ₂ -E/GJ (RELEVANT OXIDATION FACTORS		FACTORS
		CO ₂	CH ₄	N ₂ O
Diesel oil	38.6	69.2	0.01	0.6

Average diesel consumption for electricity generation during construction (i.e., first 3 months).

CO₂-e are estimated as follows:


Emissions of carbon dioxide:

= 8013.36t CO₂-e

Emissions of methane:

= (3000 x 38.6 x 0.01)/1,000

= 1.16 t CO₂-e

= 27646.09 t CO₂-e Emissions of methane: = (10350 x 38.6 x 0.01)/1,000 $= 4.00 \text{ t CO}_2 \text{-e}$ Emissions of nitrous oxide: = (10350 x 38.6 x 0.6)/1,000 = 239.71 t CO₂-e Total scope 1 GHG emissions = 27646.09 + 4.00 + 239.71 = 27889.79 t CO₂-e (0.03 Mt CO₂-e) Average diesel consumption associated with vehicle movement on site mining 3.3 Mt/a (2 years to closure). CO₂-e are estimated as follows: Emissions of carbon dioxide: = (13500 x 38.6 x 69.2)/1,000 = 36,060.12 t CO₂-e Emissions of methane: = (13500 x 38.6 x 0.01)/1,000 = 5.21 t CO₂-e Emissions of nitrous oxide: = (13500 x 38.6 x 0.6)/1,000 = 312.66 t CO₂-e Total scope 1 GHG emissions = 36060.12 + 5.21 + 312.66 = 36377.99 t CO₂-e (0.04 Mt CO₂-e)

Fuel combustion emissions – liquid fuels

The following formula has been used to estimate greenhouse gas emissions from the stationary combustion of diesel oil.

$$E_{ij} = \frac{Q_i \times EC_i \times EF_{ijoxec}}{1\ 000}$$

where:

 E_{ij} is the emissions of gas type (j), (carbon dioxide, methane or nitrous oxide, from fuel type (i) (CO₂-e tonnes).

 ${oldsymbol Q}_i$ is the quantity diesel oil (i) (kilolitres) combusted for stationary energy purposes

 EC_i is the energy content factor of fuel type (i) (gigajoules per kilolitre) for stationary energy purposes.

EF_{ijoxec} is the emission factor for each gas type (j) (which includes the effect of an oxidation factor) for fuel type (i) (kilograms CO₂-e per gigajoule).

Fuel combusted	Energy content factor (GJ/kL unless otherwise indicated) (EC _i)	EMISSION FACTOR KG CO ₂ -E/GJ (RELEVANT OXIDATION FACTORS INCORPORATED) (EF _{ijoxec})		FACTORS
		CO ₂	CH ₄	N ₂ O
Diesel oil	38.6	69.2	0.1	0.2

Average diesel consumption for electricity generation during all operations.

CO₂-e are estimated as follows:

Emissions of carbon dioxide:

= (1800 x 38.6 x 69.2)/1,000

= 4808.02 t CO₂-e

Emissions of methane:

= (1800 x 38.6 x 0.1)/1,000

= $0.69 \text{ t CO}_2\text{-e}$ Emissions of nitrous oxide: = $(1800 \times 38.6 \times 0.2)/1,000$ = $41.69 \text{ t CO}_2\text{-e}$ Total scope 1 GHG emissions = 4808.02 + 0.69 + 41.69= $4850.40 \text{ t CO}_2\text{-e} (0.005 \text{ Mt CO}_2\text{-e})$