CDM SMITH AUSTRALIA

Level 1, 48-50 Smith Street Darwin NT 0800 australia@cdmsmith.com

Chapter Ten Commonwealth Government Matters Winchelsea Island (Akwamburrkba) Manganese Mine: Draft Environmental Impact Statement

PREPARED FOR:

Winchelsea Mining Pty Ltd

Address: Pole 12 Roswell Highway Alyangula, NT

Website: https://wmining.com.au Email: office@wmining.com.au

Table of contents

Key Pro	oject Terms	xxvi
Acrony	ms, Abbreviations and Units	xxviii
Section	1 Introduction	1
1.1	Overview	1
1.1.1	Project Details	1
1.1.2	Project Purpose	
1.1.3	Importance and Use of Manganese Ore	
1.1.4	Regulatory Process	7
1.1.5	Summary of Key Physical Components of the Proposal	
1.2	Objectives of the Proposal	12
1.3	Project Location and Regional Setting	17
1.3.1	Locational Setting	17
1.3.2	Environmental Setting	
1.3.3	Cultural Setting	
1.4	Proponent Details	
1.4.1	Contact Details	
1.4.2	Background and Purpose of Winchelsea Mining	
1.4.3	Winchelsea Organisational Structure	
1.4.4	Winchelsea Environmental Record	
1.5	Land Tenure and Zoning	
1.5.1	Land Tenure	
1.5.2	Mineral Lease	
1.5.3	Other Resource Tenure	
1.5.4	Zoning	
1.6	Draft EIS Structure	40
1.7	Cross Reference	43
1.8	Minor Amendments to Proposal since Referral	
Section	n 2 Approvals and Regulatory Framework	
2.1	Project Approvals Process	
2.1.1	Assessment Bilateral Agreements	
2.2	Relevant Legislation and Policies	57
2.2.1	Commonwealth	
2.2.2	Northern Territory	

Section	o 3 Stakeholder Engagement and Consultation	
3.1	Engagement Purpose, Objectives and Outcomes	
3.1.1	Purpose and Objectives	65
3.1.2	Outcomes	
3.2	Stakeholder Engagement Strategy	
3.2.1	Overview of Approach	
3.2.2	Principles for Project Engagement	66
3.2.3	Significant Variation Process	67
3.3	Stakeholder Analysis	
3.3.1	IAP2 Core Values	
3.3.2	Key Stakeholders	
3.4	Identification of Potential Concerns and Opportunities	71
3.5	Level of Engagement and Activities	71
3.6	Stakeholder Engagement to Date	75
3.7	Future Engagement	79
Section	a 4 Project Description	
4.1	Overview	
4.2	Previous Activities	
4.3	Mineral Resources and Ore Reserves	
4.3.1	Investigations	83
4.3.2	Ore Estimation	86
4.3.3	Product Quality	
4.4	Construction and Operation	
4.4.1	Design	
4.4.2	Mining	92
4.4.3	Processing	
4.4.4	Tailings Storage	
4.4.5	Process Water	
4.4.6	Power Station	
4.4.7	Rock Quarry	
4.4.8	Haul Roads	
4.4.9	Ancillary Mine Infrastructure	
4.4.10	Wharf, Barging and Transhipment	
4.4.11	Dredging and Spoil Disposal	
4.4.12	Dredge Channel	
4.4.13	Waste Generation	
4.4.14	Workforce and Accommodation	

4.4.15	Transport	
4.4.16	Water Use and Supply	
4.4.17	Dangerous Goods and Hazardous Substances	
4.4.18	Impact of a Changing Climate	
Section	5 Rehabilitation and Mine Closure	158
5.1	Mine Closure Planning	
5.1.1	Closure Components	
5.1.2	Post-Mining Land Use	
5.1.3	Closure-Outcomes and Completion Criteria	
5.1.4	Closure Plans	
5.2	Rehabilitation Planning	
5.2.1	Research, Investigation and Trials	
5.3	Monitoring and Maintenance	
Section	6 Alternatives Assessment	172
6.1	Mining, Ore Processing and Tailings	
6.2	Power Supply	
6.3	Water Supply	
6.4	Marine Components	
Section	17 Existing Environment	181
7.1	Landforms and Terrestrial Environmental Quality	
7.2	Terrestrial Ecosystems	
7.3	Hydrological Processes	
7.4	Inland Water Quality	
7.5	Aquatic Ecosystems	
7.6	Coastal Processes	
7.7	Marine Environmental Quality	
7.8	Marine Ecosystems	
7.9	Air Quality and Atmospheric Processes	
7.10	Community and Economy	
7.11	Culture and Heritage	
7.12	Human Health	
Section	8 Risk Assessment of Env Factors	196
8.1	Introduction	

8.2	Risk Assessment Methodology	
8.2.1	Risk Identification	
8.2.2	Risk Matrix	
8.2.3	Risk Treatment	
8.2.4	Risk Evaluation and Assessment	
8.2.5	Indirect and Cumulative Impact	
Section	n 9 Key Environmental Factors	
9.1	Landforms	
9.1.1	Environmental Values	
9.1.2	Existing Features and Landforms	
9.1.3	Potential Significant Impacts and Risks	
9.1.4	Avoidance, Mitigation and Management	
9.1.5	Monitoring and Reporting	
9.1.6	Residual Impact	
9.1.7	Predicted Outcome and Conclusion	
9.2	Terrestrial Environmental Quality	
9.2.1	Environmental Values	
9.2.2	Potential Significant Impacts and Risks	
9.2.3	Avoidance, Mitigation and Management	
9.2.4	Monitoring and Reporting	
9.2.5	Residual Impact	
9.2.6	Predicted Outcome and Conclusion	
9.3	Terrestrial Ecosystems	
9.3.1	Environmental Values	
9.3.2	Potential Significant Impact and Risks	
9.3.3	Avoidance, Mitigation and Management	
9.3.4	Monitoring and Reporting	
9.3.5	Residual Impact	
9.3.6	Predicted Outcome and Conclusion	
9.4	Hydrological Processes	
9.4.1	Environmental Values	
9.4.2	Potential Significant Impacts and Risks	
9.4.3	Avoidance, Mitigation and Management Measures	
9.4.4	Monitoring and Reporting	
9.4.5	Residual Impact	
9.4.6	Predicted Outcome and Conclusion	
9.5	Inland Water Environmental Quality	
9.5.1	Environmental Values	
9.5.2	Potential Significant Impacts and Risks	

9.5.3	Avoidance, Mitigation and Management	
9.5.4	Monitoring and Reporting	
9.5.5	Residual Impact	
9.5.6	Predicted Outcome and Conclusions	
9.6	Aquatic Ecosystems	
9.6.1	Environmental Values	
9.6.2	Potential Significant Impacts and Risks	
9.6.3	Avoidance, Mitigation and Management	
9.6.4	Monitoring and Reporting	
9.6.5	Residual Impact	
9.6.6	Predicted Outcome and Conclusion	
9.7	Coastal Processes	
9.7.1	Environmental Values	
9.7.2	Potential Significant Impacts and Risks	
9.7.3	Avoidance, Mitigation and Management	
9.7.4	Monitoring and Reporting	
9.7.5	Residual Impact	
9.7.6	Predicted Outcome and Conclusion	
9.8	Marine Environmental Quality	
9.8.1	Environmental Values	
9.8.2	Potential Significant Impacts and Risks	
9.8.3	Avoidance, Mitigation and Management	
9.8.4	Monitoring and Reporting	
9.8.5	Residual Impact	
9.8.6	Predicted Outcome and Conclusion	
9.9	Marine Ecosystems	
9.9.1	Environmental Values	
9.9.2	Potential Significant Impacts and Risks	
9.9.3	Avoidance, Mitigation and Management	
9.9.4	Monitoring and Reporting	
9.9.5	Residual Impact	
9.9.6	Predicted Outcome and Conclusion	
9.10	Air Quality	
9.10.1	Environmental Values	
9.10.2	Potential Significant Impacts and Risks	
9.10.3	Avoidance, Mitigation and Management	
9.10.4	Monitoring and Reporting	
9.10.5	Residual Impact	
9.10.6	Predicted Outcome and Conclusion	

9.11	Atmospheric Processes	
9.11.1	Environmental Values	
9.11.2	Potential Significant Impacts and Risks	
9.11.3	Avoidance, Mitigation and Management	
9.11.4	Monitoring and Reporting	
9.11.5	Residual Impact	
9.11.6	Predicted Outcome and Conclusion	
9.12	Community and Economy	
9.12.1	Environmental Values	
9.12.2	Potential Significant Impacts and Risks	
9.12.3	Avoidance, Mitigation and Management	
9.12.4	Monitoring and Reporting	
9.12.5	Residual Impact	
9.12.6	Predicted Outcome and Conclusion	
9.13	Culture and Heritage	
9.13.1	Environmental Values	
9.13.2	Potential Significant Impacts and Risks	
9.13.3	Avoidance, Mitigation and Management	
9.13.4	Monitoring and Reporting	
9.13.5	Residual Impact	
9.13.6	Predicted Outcome and Conclusion	
9.14	Human Health	
9.14.1	Environmental Values	
9.14.2	Potential Significant Impacts and Risks	
9.14.3	Avoidance, Mitigation and Management	
9.14.4	Monitoring and Reporting	
9.14.5	Residual Impact	
9.14.6	Predicted Outcome and Conclusion	
Section	10 Commonwealth Government Matters	1000
10.1	Environment Protection and Biodiversity Conservation Act 1999	
10.2	Matters of National Environmental Significant	
10.2.1	Overview	
10.2.2	Desktop and Field Surveys Assessment	
10.2.3	Likelihood of Occurrence Assessment	
10.2.4	Nationally Threatened Species – Significant Impact Assessments	
10.2.5	Migratory Species – Significant Impact Assessment	
Section	11 Environmental Management	1037
11.1	Environmental Management System	

11.2	Environmental Policy	1039
11.3	Environmental Requirements	
11.4	Roles and Responsibilities	
11.4.1	Overview	
11.4.2	Design and Construction Works	
11.5	Incident Reporting, Management and Corrective Actions	
11.5.1	Incident Reporting and Management	
11.5.2	Corrective Actions	
11.6	Education and Training	
11.7	Environmental Inspections and Audits	
11.7.1	Inspections	
11.7.2	Audits	
11.8	Communication and Reporting	
11.8.1	Project Internal	
11.8.2	Project External	
11.8.3	Contractor Monthly Reporting	
11.8.4	Records of Environmental Activities	1052
11.8.5	Documentation, Document Control and Records	
11.9	Performance Outcomes and Indicators	
11.10	Continual Improvement	
Section	12 Offsets	1055
Section	13 Holistic Assessment	1059
13.1	Indirect and Cumulative Impact Assessment	
13.2	Consideration of Project Against Legislated Principles and Duties	
13.2.1	Ecologically Sustainable Development	
13.2.2	Waste Management Hierarchy	
13.2.3	Ecosystem-Based Management	
13.2.4	Impacts of a Changing Climate	
13.2.5	General Duty of Proponents	
Section	14 Conclusion of Predicted Impacts	1101
Section	15 References	1127
15.1	Sections 1 to 6	1127
15.2	Section 7	1130
15.3	Section 8	

15.4	Section 9	1132
15.4.1	Section 9.1 (Landforms)	1132
15.4.2	Section 9.2 (Terrestrial Environmental Quality)	1134
15.4.3	Section 9.3 (Terrestrial Ecosystems)	1135
15.4.4	Section. 9.4 (Hydrological Processes)	1139
15.4.5	Section 9.5 (Inland Water Environmental Quality)	1141
15.4.6	Section 9.6 (Aquatic Ecosystems)	1142
15.4.7	Section 9.7 (Coastal Processes)	
15.4.8	Section 9.8 (Marine Environment Quality)	1145
15.4.9	Section 9.9 (Marine Ecosystems)	1147
15.4.10	Section 9.10 (Air Quality)	1150
15.4.11	Section 9.11 (Atmospheric Processes)	1151
15.4.12	Section 9.12 (Community and Economy)	1151
15.4.13	Section 9.13 (Culture and Heritage)	1153
15.4.14	Section 9.14 (Human Health)	1155
15.5	Section 10 to 14	1156

Figures

Figure 1.1-1	Project Location	3
Figure 1.1-2	Minerals Used in Electric Cars Compared to Conventional Cars	6
Figure 1.1-3	Mineral Use in Power Generation Sources	6
Figure 1.2-1	ALC 15-Year Strategic Plan Goals, Source ALC, n.d	15
Figure 1.3-1	Regional Location	19
Figure 1.3-2	Key Environmental Features of the Groote Archipelago	21
Figure 1.3-3	Key Communities and Cultural Features of the Groote Archipelago	24
Figure 1.4-1	Winchelsea Mining Revenue Structure	29
Figure 1.4-2	Indicative Winchelsea Organisational Structure	30
Figure 1.4-3	Winchelsea Environmental Policy	32
Figure 1.5-1	Anindilyakwa Indigenous Protected Area	34
Figure 1.5-2	Anindilyakwa Land Council Proposed Sea Native Title Claim Area	35
Figure 1.5-3	Land Tenure	36
Figure 1.5-4	Resource Tenures	39
Figure 1.8-1	Winchelsea Island Mine Proposed Old (left) and New (right) Project Layout Comparison	53
Figure 1.8-2	Winchelsea Island Mine Infrastructure Area Old Layout / New Layout Comparison	54
Figure 2.1-1	EIS Approval Process	56
Figure 2.2-1	Components of the NT Offsets Framework	59
Figure 4.3-1	Collation of Exploration Investigations	85
Figure 4.3-2	Schedule of Product Type Production	88
Figure 4.3-3	Margin of Product and Areas of Resource Excluded from the Project	91

Figure 4.4-1 Mining Pits and Sequence	94
Figure 4.4-2 Production Profile Over Life of Mine	
Figure 4.4-3 Ore Movement Schedule	
Figure 4.4-4 Waste Overbudren Movement Schedule	
Figure 4.4-5 Stage 1 Plant General Arrangement	
Figure 4.4-6 Stage 2 Thickener, Process Water and Services General Arrangement	
Figure 4.4-7 Process Plant Process Flow Diagram	
Figure 4.4-8 Tailings Disposal Pump Arrangement	
Figure 4.4-9 Tailings Storage Facility Layouts	
Figure 4.4-10 Annual Process Water Demand	
Figure 4.4-11 Example Diesel Generator Type	
Figure 4.4-12 Mine Infrastructure Area Layout	
Figure 4.4-13 Indicative Haul Road Cross-Section Design	
Figure 4.4-14 Barge Loading Facility General Arrangement	
Figure 4.4-15 Transhipment Process Flow Diagram	
Figure 4.4-16 Existing and Proposed Cyclone Moorings	
Figure 4.4-17 Typical Cutter Suction Dredge Layout	
Figure 4.4-18 Typical Cutter Suction Dredge Operation	
Figure 4.4-19 Conceptual Dredging Arrangement and Seabed Condition	
Figure 4.4-20 Water Circuit Schematic	
Figure 5.1-1 Expected Mine Voids and Infrastructure at Closure	
Figure 5.3-1 Progressive Mine Rehabilitation Phase 1 to 4: 2024 – 2037	
Figure 5.3-1 Assessment Approach for Considering Alternatives	
Figure 6.4-1 Northern Export Wharf Option	
Figure 6.4-2 Southern Wharf Non-Dredging Option (1R2)	
Figure 6.4-3 Southern Wharf Non-Dredging Option (1J1)	
Figure 6.4-4 Example RORO Barge Option	
Figure 6.4-5 Extract of Marine Alternative Options Assessment	
Figure 7.1-1 Existing Environmental Features Relevant to Landforms and Terrestrial Environmental Quali	ity 183
Figure 7.2-1 Existing Environmental Features Relevant to Terrestrial Ecosystems	
Figure 7.4-1 Existing Environmental Features Relevant to Hydrological Processes and Inland Water Quali	ity187
Figure 7.6-1 Existing Environmental Features Relevant to Coastal Processes	
Figure 7.8-1 Existing Environmental Features Relevant to Marine Environmental Quality and Ecosystems	
Figure 7.10-1 Existing Environmental Features Relevant to Air Quality, Community and Economy	
Figure 7.12-1 Existing Environmental Features Relevant to Cultural Heritage and Human Health	
Figure 8.2-1 Project Risk Assessment Methodology	201
Figure 8.2-2 Project and Actions Considered for Cumulative Impacts	
Figure 9.1-1 Land System	231
Figure 9.1-2 Topography	
Figure 9.1-3 Landform Features on Winchelsea Islan	
Figure 9.1-4 Western Winchelsea Island Coastal Landforms and Geomorphology	

Figure 9.1-5	Images of Key Landform Features on Winchelsea Island	
Figure 9.1-6	Images of Key Landform Features on Winchelsea Island	249
Figure 9.2-1	Surface Geology Units	272
Figure 9.2-2	Geology Field Mapping – Fact Map	273
Figure 9.2-3	Collation of Exploration Investigations	274
Figure 9.2-4	Winchelsea Island Stratigraphy	275
Figure 9.2-5	Topography and Drainage Lines	276
Figure 9.2-6	Land System	279
Figure 9.2-7	Soil Particle Size Distribution	282
Figure 9.2-8	Soil Types	283
Figure 9.2-9	Sampling Locations	
Figure 9.3-1	Project Location in the Gulf of Carpentaria	
Figure 9.3-2	Vegetation Mapping Units (VMUs) within the Project Disturbance Envelope	325
Figure 9.3-3	Vegetation and Flora Survey Sites	329
Figure 9.3-4	Data Deficient and Not Evaluated Plant Species Recorded on Winchelsea Island During Terrestrial E	cology Surveys
-	Potential Groundwater Dependant Ecosystems (GDEs) in the Project Area	
	Avian Survey Sites	
Figure 9.3-7	Records of Terrestrial Migratory and Data Deficient Avian Species	
Figure 9.3-8	Locations of Northern Masked Owl ARUs and Call Broadcast Surveys	348
Figure 9.3-9	Northern Masked Owl Call Kernel Density and Locations of Sightings and Social Call Detections	349
	, , , , , , , , , , , , , , , , , , , ,	
Figure 9.3-10	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes	t Site Locations
	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes	t Site Locations 351
Figure 9.3-11	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects	t Site Locations 351 353
Figure 9.3-11 Figure 9.3-12	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island	t Site Locations 351 353 354
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022	t Site Locations 351 353 354 356
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations	t Site Locations 351 353 354 356 358
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations Northern Quoll Records	t Site Locations 351 353 354 356 358 360
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations Northern Quoll Records Records of Other Threatened Fauna Species Records of TPWC Act Near Threatened and Data Deficient Species	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations Northern Quoll Records Records of Other Threatened Fauna Species Records of TPWC Act Near Threatened and Data Deficient Species Significant Vegetation Communities and Key Impact Areas Within the Project Area Topography and Drainage Lines	t Site Locations 351 353 354 356 360 361 362 393 420
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations Northern Quoll Records Records of Other Threatened Fauna Species Records of Other Threatened Fauna Species Records of TPWC Act Near Threatened and Data Deficient Species Significant Vegetation Communities and Key Impact Areas Within the Project Area Topography and Drainage Lines Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1 Figure 9.4-2	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects. Rodent Detections on Winchelsea Island. Locations of Bat Survey Sites in 2022. Camera Trap Locations . Northern Quoll Records . Records of Other Threatened Fauna Species. Records of TPWC Act Near Threatened and Data Deficient Species. Significant Vegetation Communities and Key Impact Areas Within the Project Area Topography and Drainage Lines . Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level . Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level . Existing Conditions 2% AEP Event Flood Extent, Depth and Water Level .	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1 Figure 9.4-2 Figure 9.4-3 Figure 9.4-4 Figure 9.4-5	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022. Camera Trap Locations Northern Quoll Records Records of Other Threatened Fauna Species Records of TPWC Act Near Threatened and Data Deficient Species Significant Vegetation Communities and Key Impact Areas Within the Project Area Topography and Drainage Lines Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 2% AEP Event Flood Extent, Depth and Water Level Existing conditions 5% AEP event flood extent, depth and water level	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1 Figure 9.4-2 Figure 9.4-3 Figure 9.4-4	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations Northern Quoll Records Records of Other Threatened Fauna Species Records of Other Threatened Fauna Species Records of TPWC Act Near Threatened and Data Deficient Species Significant Vegetation Communities and Key Impact Areas Within the Project Area Topography and Drainage Lines Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 2% AEP Event Flood Extent, Depth and Water Level Existing conditions 5% AEP event flood extent, depth and water level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1 Figure 9.4-2 Figure 9.4-3 Figure 9.4-4 Figure 9.4-5	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects Rodent Detections on Winchelsea Island Locations of Bat Survey Sites in 2022 Camera Trap Locations Northern Quoll Records Records of Other Threatened Fauna Species Records of TPWC Act Near Threatened and Data Deficient Species Significant Vegetation Communities and Key Impact Areas Within the Project Area Topography and Drainage Lines Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 5% AEP event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1 Figure 9.4-2 Figure 9.4-3 Figure 9.4-4 Figure 9.4-5 Figure 9.4-6 Figure 9.4-7 Figure 9.4-8	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects. Rodent Detections on Winchelsea Island. Locations of Bat Survey Sites in 2022. Camera Trap Locations Northern Quoll Records. Records of Other Threatened Fauna Species. Records of TPWC Act Near Threatened and Data Deficient Species. Significant Vegetation Communities and Key Impact Areas Within the Project Area. Topography and Drainage Lines Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 2% AEP Event Flood Extent, Depth and Water Level Existing conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Extent of Storm Surge Events, ADG, 2018	t Site Locations
Figure 9.3-11 Figure 9.3-12 Figure 9.3-13 Figure 9.3-14 Figure 9.3-15 Figure 9.3-16 Figure 9.3-17 Figure 9.3-18 Figure 9.4-1 Figure 9.4-2 Figure 9.4-3 Figure 9.4-4 Figure 9.4-5 Figure 9.4-6 Figure 9.4-7 Figure 9.4-8	Potential Northern Masked Owl Habitat Trees with Quality Categorisations and Potential Roost/Nes Rodent Burrow Coastal and Inland Aerial Transects. Rodent Detections on Winchelsea Island. Locations of Bat Survey Sites in 2022. Camera Trap Locations Northern Quoll Records. Records of Other Threatened Fauna Species. Records of TPWC Act Near Threatened and Data Deficient Species. Significant Vegetation Communities and Key Impact Areas Within the Project Area. Topography and Drainage Lines Existing conditions 0.1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level Existing Conditions 2% AEP Event Flood Extent, Depth and Water Level Existing conditions 5% AEP event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level Existing Conditions 10% AEP Event Flood Extent, Depth and Water Level	t Site Locations

Figure 9.4-11	Bedrock 1m Contours and Monitoring bores.	432
Figure 9.4-12	Model of the Basement Quartzite, Xenith, 2020	433
Figure 9.4-13	Winchelsea Island Approximate Areal Extent of Cretaceous Aquifer	434
Figure 9.4-14	Airborne Electromagnetic Depth Slice Showing the Saltwater Wedge/Freshwater Lens for Winchelsea Isl	and436
Figure 9.4-15	Groundwater Sampling Locations	438
Figure 9.4-16	BoM Atlas of Terrestrial GDEs for Winchelsea Island	441
Figure 9.4-17	NT Declared Water Control Districts	443
Figure 9.4-18	NT Water Allocation Planning Area	444
Figure 9.4-19	Beneficial Use Areas in the Groote Archipelago	445
Figure 9.4-20	Potential Water Balance Changes at Three Stages of Mining Winchelsea Island	451
Figure 9.4-21	Developed Conditions 0.1% AEP Event Flood Extent, Depth and Water Level	453
Figure 9.4-22	Developed Conditions 1% AEP Event Flood Extent, Depth and Water Level	454
Figure 9.4-23	Developed Conditions 2% AEP Event Flood Extent, Depth and Water Level	455
Figure 9.4-24	Developed Conditions 5% AEP Event Flood Extent, Depth and Water Level	456
Figure 9.4-25	Developed Conditions 10% AEP Event Flood Extent, Depth and Water Leve	457
Figure 9.4-26	Groundwater Model Grid	461
Figure 9.4-27	Modelled Water Levels (Depth of 5 m to -5 m) in the Winchelsea Island Sedimentary Aquifer Over Time	462
Figure 9.4-28	Saltwater Intrusion, U.S. Geological Survey, 2019	463
Figure 9.4-29	Modelled Salinities for a Depth of 5 m to -5 m	465
Figure 9.4-30	Modelled Salinities for a depth of -5 m to -15 m	466
Figure 9.4-31	Vegetation Communities of Winchelsea Island with Potential Groundwater Ecosystems	468
Figure 9.4-32	Groundwater Monitoring Locations	474
Figure 9.5-1	Existing Inland Surface Water Features	482
Figure 9.5-2	Existing Conditions 1% AEP Event Flood Extent, Depth and Water Level	483
Figure 9.5-3	Extent of Storm Surge Events, ADG, 2018	484
Figure 9.5-4	Baseline Sampling Locations	497
Figure 9.5-5	Model Layering, Looking North-East Through a Central Slice of Winchelsea Island	510
Figure 9.5-6	Modelled Layer 3 Salinities	512
Figure 9.5-7	Modelled Layer 4 Salinities	513
Figure 9.5-8	Modelled Salinities at WMB1 and WMB2 and, Bold Line Shows Geomean Value	514
Figure 9.5-9	Modelled Salinities at WMB4 and the Pit Lake, Bold Line Shows Geomean Value	515
Figure 9.5-10	Modelled Salinities at the WMB6 and WMB7, Bold Line Shows Geomean Value	516
Figure 9.5-11	Maximum Pit Water Salinity Discharges	519
Figure 9.5-12	PWD Salinity and Overflow Volume (Simulation 39)	519
Figure 9.5-13	Proposed Surface Water Discharge Locations	520
Figure 9.5-14	Ongoing Terrestrial Monitoring Plan	533
Figure 9.6-1	Examples of Aquatic Ecosystems on Winchelsea Island	540
Figure 9.6-2	Aquatic Systems on Winchelsea Island	542
Figure 9.6-3	Groundwater Dependent Ecosystem Mapping	546
Figure 9.6-4	Groundwater, Surface Water, Soil and Sediment Sampling Locations	552
Figure 9.6-5	Area of Potential Impact to Groundwater Dependent Ecosystems	562

Figure 9.6-6 Modelled End of Mining Water Levels and Salinity Concentrations	. 563	
Figure 9.7-1 Marine Activity and Infrastructure Areas	576	
Figure 9.7-2 Barge Loading Facility and Dredge Channel	577	
Figure 9.7-3 Surface Geology Units	580	
Figure 9.7-4 Western Winchelsea Island Coastal Geomorphology	583	
Figure 9.7-5 Bartalumba Bay Bathymetry and Tidal Planes	. 585	
Figure 9.7-6 Selected Monthly Wind Roses from Milner Bay, Groote Eylandt (south of Winchelsea Island)	586	
Figure 9.7-7 Marine Sediment Sample Locations	589	
Figure 9.7-8 Sediment Sizes for Surface Samples (Left) and Top Layer of Vibracore Samples (Right)	590	
Figure 9.7-9 Locations of Water Level and Current Data Loggers	592	
Figure 9.7-10 Typical Current Patterns in Bartalumba Bay	593	
Figure 9.7-11 Current Roses from Current Data Loggers	594	
Figure 9.7-12 Key Fetches for Elevated Wave Conditions in Bartalumba Bay	597	
Figure 9.7-13 Indicative Southward Sediment Transport Along Sandy Embankment	598	
Figure 9.7-14 Survey Locations for Benthic Communities and Habitat	600	
Figure 9.7-15 Mangroves Species Adjacent to Site	603	
Figure 9.7-16 Significant Wave Height Maps for a Strong North-west Monsoon Condition With or Without Structures .	608	
Figure 9.7-17 Significant Wave Height Maps for a Strong South-east Trade Condition With or Without Structures	609	
Figure 9.7-18 Depth Average Current Magnitude and Direction Maps for Strong Southward Flow With or Without Stru	ctures	611
Figure 9.7-19 Depth Average Current Magnitude Maps for Strong Southward Flow With or Without Structures	612	
Figure 9.7-20 Bed Shear Stress for Strong Southward Flow Only With or Without Structures	614	
Figure 9.7-21 Bed Shear Stress for Strong Northward Flow Only With or Without Structures	615	
Figure 9.7-22 Bed Shear Stress With or Without Structures For Strong Southward Flow Plus Strong Southeast Wind (~	l year ARI)	616
Figure 9.7-23 Bed Shear Stress With or Without Structures For Strong Northward Flow Plus Strong Southeast Wind (~	l year ARI)	617
Figure 9.7-24 Bed Shear Stress With or Without Structures For Strong Southward Flow Plus Strong Northeast Wind (~1	year ARI)	618
Figure 9.7-25 Bed Shear Stress With or Without Structures For Strong Northward Flow Plus Strong Northeast Wind (~1	year ARI)	619
Figure 9.7-26 Potential Sedimentation Mechanisms	620	
Figure 9.7-27 Conceptual Dredging Arrangement and Seabed Condition	623	
Figure 9.7-28 Transhipment Spill Worst Case Scenario	625	
Figure 9.7-29 Loading Bay Spill Worst Case Scenario	626	
Figure 9.7-30 Indicative Habitat Impact Areas for Worst Case Wharf Option	628	
Figure 9.8-1 Marine Activity and Infrastructure Areas	636	
Figure 9.8-2 Barge Loading Facility and Dredge Channel	637	
Figure 9.8-3 Marine Sample Locations	639	
Figure 9.8-4 In-situ Marine Water Temperature Data for Bartalumba Bay	642	
Figure 9.8-5 In-situ Marine Water Salinity Data for Bartalumba Bay	643	
Figure 9.8-6 In-situ Marine Water Electrical Conductivity Data for Bartalumba Bay	643	
Figure 9.8-7 In-situ Marine Water Total Suspended Solids Data for Bartalumba Bay	644	
Figure 9.8-8 In-situ Marine Water Turbidity Data for Bartalumba Bay	645	
Figure 9.8-9 Mean PAR Results with Depth in Bartalumba Bay – A	646	
Figure 9.8-10 Mean PAR Results with Depth in Bartalumba Bay – B	647	

Figure 9.8-11 In-situ Marine Water Dissolved Oxygen Data for Bartalumba Bay	648
Figure 9.8-12 In-situ Marine Water pH Data for Bartalumba Bay	649
Figure 9.8-13 Current Marine Traffic Density and Indicative Project Shipping and Barge Routes	664
Figure 9.8-14 Typical Cutter Suction Dredge Layout and Operation	668
Figure 9.8-15 Worst Case Dredge and Disposal Scenario Maximum Depth-averaged SSC Results	669
Figure 9.8-16 Worst Case Transhipment Maximum Depth-averaged SSC Results	670
Figure 9.8-17 Worst Case Loading Bay Maximum Depth-averaged SSC Results	671
Figure 9.8-18 Benthic Communities Habitat Map of Bartalumba Bay	675
Figure 9.8-19 Mapped Dredge and Disposal Plume ZoMI and ZoHI Extents	676
Figure 9.8-20 Modelled Running Means and ZoMi and ZoHi Threshold Levels at Five Selected Locations	677
Figure 9.8-21 Plausible Minimum and Maximum Wharf Structure Extents, Seashore Engineering (2023)	679
Figure 9.9-1 Wharf and Barge Loading Facility	697
Figure 9.9-2 Existing and Proposed Cyclone Moorings	698
Figure 9.9-3 Bioregional Setting and Key Marine Ecological Features	702
Figure 9.9-4 Survey Locations and Effort for Benthic Communities and Habitats	706
Figure 9.9-5 BCH Map of the Barge Loading Facility Area	713
Figure 9.9-6 BCH Map of the Transhipment Area	717
Figure 9.9-7 BCH Map of the Proposed Cyclone Mooring Zone	718
Figure 9.9-8 Benthic Infauna Sampling Sites	720
Figure 9.9-9 Species Richness Index (Margalef's-d) for all Sites in the Survey Area	721
Figure 9.9-10 Species Diversity Index (Shannon-H) for all Sites in the Survey Area	721
Figure 9.9-11 Evenness and Dominance Values for all Sites in the Survey Area	722
Figure 9.9-12 Protected Matters Search Tool Search Area	726
Figure 9.9-13 Marine Turtle Nest Aerial Survey Transects and Ground Survey Areas	727
Figure 9.9-14 Migratory Bird Aerial Survey Transects and Ground Wetland Survey Sites	729
Figure 9.9-15 Conservation Significant Marine Species Sightings in the Project Search Area	745
Figure 9.9-16 Records of EPBC Listed Migratory Shorebirds on Winchelsea Island - Entire Island	752
Figure 9.9-17 Records of EPBC Listed Migratory Shorebirds on Winchelsea Island - Inset A	753
Figure 9.9-18 Records of EPBC Listed Migratory Shorebirds on Winchelsea Island – Inset B	754
Figure 9.9-19 Records of EPBC Listed Migratory Shorebirds on Winchelsea Island - Inset C	755
Figure 9.9-20 Records of EPBC Listed Migratory Shorebirds on Winchelsea Island – Inset D	756
Figure 9.9-21 Locally Important Shorebird and Wetland Bird Habitats on Winchelsea Island	757
Figure 9.9-22 Marine Turtle Nesting Records and Locally Significant Marine Turtle Nesting Locations	775
Figure 9.9-23 Transhipment Anchorage Exclusion Area	786
Figure 9.10-1 Selected Monthly Wind Roses from Milner Bay, Groote Eylandt (South of Winchelsea Island)	807
Figure 9.10-2 Sensitive Receptors and Sensitive Zones Relevant to the Project	809
Figure 9.10-3 Year 12 - Predicted Annual Average Ground-level Concentrations of TSP due to the Project	816
Figure 9.10-4 Year 12 - Predicted Max 24-hour Average Ground-level Concentrations of PM10 due to the Project	817
Figure 9.10-5 Year 12 - Predicted Annual Average Ground-level Concentrations of PM10 due to the Project	818
Figure 9.10-6 Year 12 - Predicted Max-24 hour Average Ground-level Concentrations of PM2.5 due to the Project	819
Figure 9.10-7 Year 12 - Predicted Annual Average Ground-level Concentrations of PM2.5 due to the Project	820

Figure 9.10-8 Predicted Maximum Monthly Dust Deposition Rates Due to the Project, in Isolation	821
Figure 9.11-1 Australian Emission Inventory from 1990 to 2021	832
Figure 9.11-2 Existing Landscapes and Carbon Sinks of Groote Eylandt and Winchelsea Island, Ndevr Environmental	(2023) 833
Figure 9.11-3 Groote Eylandt and Winchelsea Island Emissions per IPCC Category, Ndevr Environmental (2023)	833
Figure 9.11-4 Existing Landscapes and Carbon Sinks of Groote Eyland and Winchelsea Island	834
Figure 9.12-1 Key Communities of the Groote Archipelago	847
Figure 9.12-2 Participant in the Community Development Program, Anindilyakwa SA2, 2021 Source: ABS, 2022, Cens Population and Housing 2021.	
Figure 9.12-3 Aboriginal and Torres Strait Islander and Total population, Anindilyakwa SA2, 2021. Source: ABS, 2022	, Census of
Population and Housing 2021.	852
Figure 9.12-4 Dedicated Recreation Areas and Viewpoints	855
Figure 9.12-5 Surrounding Community Services and Infrastructure	864
Figure 9.12-6 Index of Socio-economic Advantage and Disadvantage Based on Local Government Area Data	866
Figure 9.12-7 Index of Socio-economic Advantage and Disadvantage Based on SA1 Level Data	866
Figure 9.12-8 Index of Economic Resources Based on Local Government Area Data	869
Figure 9.12-9 Index of Economic Resources Based on Local Government Area Data	872
Figure 9.12-10 Index of Economic Resources Based on SA1 Level Data	872
Figure 9.12-11Proportion of Indigenous Adults in Mainstream Employment by Age: Groote Archipelago, 2006 and 20 ABS, 2022, Census of Population and Housing 2021	
Figure 9.12-12Industries of employment, Anindilyakwa (SA2), 2021. Source: ABS, 2022, Census of Population and Ho	-
Figure 9.12-13Number of Businesses, Anindilyakwa (SA2), 2016-2021. Source: ABS, 2021, 8165.0 Counts of Australia including Entries and Exits, June 2017 to June 2021.	
Figure 9.12-14Changes in Business Numbers, Anindilyakwa (SA2), 2016 to 2021. Source: ABS, 2021, 8165.0 Counts Businesses, including Entries and Exits, June 2017 to June 2021.	
Figure 9.12-15 Growth in ORIC-registered Corporations, Groote Archipelago, 1994-2021. Source: Taylor et al., 2022	879
Figure 9.13-1 Anindilyakwa Indigenous Protected Area	911
Figure 9.13-2 Regulatory and Non-Regulatory Boundaries	912
Figure 9.13-3 Images of Cultural Heritage Sites on Winchelsea Island	917
Figure 9.13-4 2017 Field Survey Transect Location and Survey Method	924
Figure 9.13-5 Identified Cultural Heritage Sites	929
Figure 9.13-6 Recorded Underwater Cultural Heritage Sites	934
Figure 9.13-7 Traditional Owner Instructed Exclusion Areas	950
Figure 9.14-1 Sensitive Human Receptors and Zones Relevant to the Project	963
Figure 9.14-2 Surrounding Community Services and Infrastructure	965
Figure 9.14-3 Proportion of Indigenous Liveborn Infants with Low Birth Weight, Groote Archipelago, 2000-2020 (Sou al., 2022 using ABS data)	-
Figure 9.14-4 Age-Specific Mortality Rates, Groote Archipelago, 2001-2020 (Source: Taylor et al., 2022 using ABS da	ıta)967
Figure 9.14-5 Total Indigenous Births and Deaths, Groote Archipelago, 2001-2020 (Source: Taylor et al., 2022 using	ABS data) 967
Figure 9.14-6 Prevalence of 'Core Activity Need for Assistance' by Age: Indigenous Population, Groote Archipelago, 2 2021	
Figure 9.14-7 Health Conditions, Groote Archipelago, 2021	970

Figure 9.14-8 Proportion of Indigenous Population with One or More Preventable Chronic Diseases, Groote Archipelago, 2016-2022		
(Source: Taylor et al., 2022 using ABS data)	971	
Figure 9.14-9 Potential Mosquito and Biting Midge Breeding Habitat	973	
Figure 9.14-10 Predicted Max 24-hour Average Ground-level Concentrations of PM _{2.5} Due to the Project	982	
Figure 9.14-11 Predicted Annual Average Ground-level Concentrations of PM _{2.5} Due to the Project	983	
Figure 11.1-1 Winchelsea Mining's Environmental Management System for the Project	1038	
Figure 11.1-2 Winchelsea Mining's Environmental Management System Documentation Structure for the Project	1039	
Figure 11.2-1 Environment Policy	1041	
Figure 11.5-1 Winchelsea Mining's Environmental Incident Management Process for the Project	1046	
Figure 13.1-1 Surrounding Activities with Potential Indirect or Cumulative Impacts	1062	
Figure 13.1-2 Potential Indirect and Cumulative Interactions with Surrounding Projects and Activities	1063	

Plates

Plate 1.2-1	Indigenous Ceremony During Exploration Program	17
Plate 1.4-1	Anindilyakwa Land Council Logo	26
Plate 1.4-2	Groote Archipelago Local Decision Making Agreement	26
Plate 1.4-3	Groote Archipelago Local Decision Making Agreement - Economic Development Implementation Plan	27
Plate 1.4-4	Media Link to Video on the Background and Purpose of Winchelsea Mining	28
Plate 4.4-1	Selection of Proposed Vehicle Fleet	96
Plate 4.4-2	Example Rock Causeway Design	. 122
Plate 4.4-3	Example Fender Piles	. 122
Plate 4.4-4	Example Barge Loader Design	. 123
Plate 4.4-5	Example Radial Telescopic Barge Loader	. 123
Plate 4.4-6	Transhipment using Dub Barge and Self Loading Geared Vessel	. 126
Plate 4.4-7	Example Tug Assisted Transhipment Dumb Barge	. 126
Plate 4.4-8	Example Primary Tug	. 127
Plate 4.4-9	Example Secondary Tug	. 127
Plate 4.4-10	Logistics Barge Loaded with Mining Equipment	. 129
Plate 4.4-11	Indicative Cyclone Mooring Arrangement	. 130
Plate 9.1-1 Vi	ew of the Homogonous Woodland of the Lateritic Plains and Rises on Gently Undulating Sandplains (Cen	tral)248
Plate 9.2-1	General View	. 293
Plate 9.2-2	Surface Sandstone	. 293
Plate 9.9-1	Mangrove Lined Shore of Winchelsea Island South of the Project Area	. 700
Plate 9.9-2 Hi	gh cover coal/marcoalgal reef in Fringing Reefs of Bartalumba Bay	. 701
Plate 9.9-3 Bi	oturbated Sand and Silt in Central Bartalumba Bay	. 701
Plate 9.9-4 Sc	oft Corals and Sponges in Northern Bartalumba Bay	. 701
Plate 9.9-5 Hi	gh cover seagrass in Southern Bartalumba Bay	. 701

Tables

Table 1.1-1	Key Assessment Milestones	8
Table 1.1-2	Physical Components of the Proposal	9
Table 1.1-3	Operational Components of the Proposal	11
Table 1.1-4	Key Project Areas	11
Table 1.4-1	Proponent Details	25
Table 1.4-2	Environmental Consultant Details	25
Table 1.4-3	Lead Engineering Consultant Details	25
Table 1.5-1	Land Tenure and Proponent Interest	
Table 1.6-1	Draft EIS Structure	40
Table 1.6-2	Key Companies Involved in the Draft EIS	40
Table 1.7-1	Summary Cross-Reference Table for ToR Requested Referral Requirements	43
Table 1.8-1	Minor Amendments to Proposal Since Referral	50
Table 2.2-1	Summary of Other Legislation Potentially Applicable to the Project	61
Table 2.2-2	Summary of Project Approvals, Licences and Permits	63
Table 3.3-1	Key Project Stakeholders	
Table 3.5-1	IAP2 Levels of Engagement	72
Table 3.5-2	Different Styles of Engagement/Communication	72
Table 3.5-3	Engagement Activities by Stakeholder Groups	73
Table 3.6-1	Description of Dedicated Traditional Aboriginal Owner and Community Consultations	75
Table 3.6-2	Organisation Meetings Involving Consultation	76
Table 3.7-1	Consultation Phases	80
Table 4.3-1	EL 27521 Crude Resource Estimate by Resource Classification	
Table 4.3-2	Mineral Lease 32704 Crude Resource Estimate by Resource Classification	
Table 4.3-3	Total ROM Ore Reserve	
Table 4.3-4	Export Products	
Table 4.3-5	Project Export Ore Schedule	
Table 4.3-6	Margin Rank/Financial Analysis Unit Costs	90
Table 4.4-1	Proposed Mining Fleet Requirements	
Table 4.4-2	Production Schedule of Mining	97
Table 4.4-3	Key Tailings Storage Facility Design Parameters	
Table 4.4-4	Smooth HDPE Liner Specifications	
Table 4.4-5	Quarrying Details	
Table 4.4-6	Project Haul Road Design Criteria	
Table 4.4-7	Transhipment Bert Vessel Range Parameters	
Table 4.4-8	Summary of Potential Construction Wastes	
Table 4.4-9 S	ummary of Potential Operational Wastes	141
Table 4.4-10	Summary of Potential Offshore Wastes	
Table 4.4-11	Winchelsea Mine Employment Breakdown	
Table 4.4-12	Water Use and Supply Source	

Table 4.4-13	Pit Water Storage Capacity	.148
Table 4.4-14	Sediment Dam Capacity	149
Table 4.4-15	Preliminary List of Project Hazardous Substances	152
Table 5.1-1	Proposed Closure Outcomes and Completion Criteria	160
Table 5.3-1	Preliminary Closure and Rehabilitation Schedule	.170
Table 8.1-1	Relevant Environmental Factors and Objectives	.197
Table 8.2-1	NT EPA Statement of Reason - Relevant Environmental Factors and Potential Risk	.198
Table 8.2-2	Qualitative Risk Analysis Matrix	202
Table 8.2-3	Risk Range	202
Table 8.2-4	Definition of Likelihood Classification	202
Table 8.2-5	Description of Risk Classification	203
Table 8.2-6	Consequence Classification	204
Table 8.2-7	Level of Certainty	209
Table 8.2-8	Identified Risks and Relevant Factors	. 211
Table 8.2-9	Summary of Risks	219
Table 8.2-10	Projects Considered for Cumulative Impacts	. 221
Table 8.2-11	Assigned Classification of Projects Relevant to Cumulative Impacts	224
Table 9.1-1 P	redominant Land Systems in the Project Area	229
Table 9.1-2	Landforms of Winchelsea Island and Linkage to Other Environmental Values	238
Table 9.1-3 P	otential Sources of Impact to Landforms	245
Table 9.1-4 P	reliminary List of Project Hazardous Substances	. 251
Table 9.1-5	Projects Considered for Cumulative Impacts	255
Table 9.1-6 A	voidance, Mitigation and Management Measures	258
Table 9.1-7 La	andforms Residual Impact Assessment Summary	265
Table 9.2-1	Predominant Land Systems in the Project Area	278
Table 9.2-2	Soil Sampling Locations and Analytical Suite	280
Table 9.2-3	Soil In-situ Results	285
Table 9.2-4	Soils Laboratory Results	286
Table 9.2-5	Photos of Winchelsea Island Surface Soils	. 291
Table 9.2-6	Completed Boreholes and Ground Conditions	294
Table 9.2-7	Soil Classification and Respective K-factor Values	296
Table 9.2-8	Existing Risk Based on Seasonality and Rainfall	296
Table 9.2-9	Potential Sources of Impact to Terrestrial Environmental Quality	. 297
Table 9.2-10	Preliminary List of Project Hazardous Substances	. 304
Table 9.2-11	Projects Considered for Cumulative Impacts	. 307
Table 9.2-12	Avoidance, Mitigation and Management Measures	.310
Table 9.2-13	Terrestrial Environmental Quality Residual Impact Assessment Summary	.316
Table 9.3-1	Threatened Flora Species with the Potential to Occur in the Project Area	.323
Table 9.3-2	Descriptions and Area Coverage of the Vegetation Mapping Units (VMUs) within the Project Disturbance	Envelope 326
Table 9.3-3	Data Deficient and Not Evaluated Plant Species Recorded on Winchelsea Island	330

Table 9.3-4	Potential Groundwater Dependant Ecosystem (GDE) Vegetation Mapping Unit (VMU) Descriptions and A Winchelsea Island	
Table 9.3-5	Threatened and Significant Fauna Species with the Potential to Occur in the Project Area	337
Table 9.3-6	Record Notes and Survey Methods for Threatened and Significant Fauna Species with the Potential to O Project Area	
Table 9.3-7	Timing of Avian Survey Effort	342
Table 9.3-8	Most Frequently Detected Avian Species on Winchelsea Island	344
Table 9.3-9	Summary of Avian Diversity, and Survey Completeness	345
Table 9.3-10	Camera Trapping Survey Effort	357
Table 9.3-11	Northern Territory Government Recommended Camera Trapping Survey Effort to Detect Rare Species (2015)	
Table 9.3-12	Overview of Terrestrial Species Relevant to the Project	364
Table 9.3-13	Potential Sources of Impacts to Terrestrial Ecosystems	374
Table 9.3-14	Summary of Clearance Footprint Vegetation Mapping Unit Total Area	382
Table 9.3-15	Projects Considered for Cumulative Impacts	397
Table 9.3-16	Potential Impacts to Terrestrial Ecosystems and Avoidance, Mitigation, and Management Measures	399
Table 9.3-17	Terrestrial Ecosystems Residual Impact Assessment Summary	409
Table 9.4-1	Frequency and Intensity of Cyclones	418
Table 9.4-2	Winchelsea Groundwater Levels	436
Table 9.4-3	Potential Source of Impacts to Hydrological Processes	446
Table 9.4-4	Design Rainfall Depths	452
Table 9.4-5	Avoidance, Mitigation and Management Measures relating to Impacts on Hydrological Processes	469
Table 9.4-6	Hydrological Processes Residual Impact Assessment Summary	477
Table 9.5-1	Surface Water Analytical Program	485
Table 9.5-2	Surface Water Monitoring Locations	486
Table 9.5-3	Surface Water In-situ Results	487
Table 9.5-4	Surface Water Laboratory Results	487
Table 9.5-5	Summary of Surface Water Quality	489
Table 9.5-6	Sediment Analytical Program	489
Table 9.5-7	Drainage Line Sediments Laboratory Results	489
Table 9.5-8	Groundwater Sampling Locations and Rationale	492
Table 9.5-9	Groundwater Analytical Program	493
Table 9.5-10	Groundwater In-situ Results	494
Table 9.5-11	Groundwater Quality Recorded Exceedances	496
Table 9.5-12	Summary of Conceptual Site Model for Inland Water Environmental Quality Contaminant Pathways	499
Table 9.5-13	Potential Sources of Impacts to Inland Water Environmental Quality	501
Table 9.5-14	Salinity Range of Mine Pits and PWD Discharges	518
Table 9.5-15	Projections of Change to Climate - Year 2090	522
Table 9.5-16	Projects Considered for Cumulative Impacts	524
Table 9.5-17	Potential Impacts to Inland Water Environmental Quality and Avoidance, Mitigation, and Management	Measures 526
Table 9.5-18	Surface and Groundwater Quality Field and Laboratory Parameters	531

Table 9.5-19	Proposed Sampling Locations	532
Table 9.5-20	Summary of Residual Risk Level to Inland Water Environmental Quality	535
Table 9.6-1	Potential GDE Vegetation Mapping Unit Descriptions and Areas on Winchelsea Island	544
Table 9.6-2	Groundwater Monitoring Locations	547
Table 9.6-3	Water Analytical Program	547
Table 9.6-4	Groundwater Exceedances 2022	549
Table 9.6-5	Aquatic Ecosystem Sampling Sites - Surface Water	550
Table 9.6-6	Terrestrial Soil Sampling Locations	550
Table 9.6-7	Soil and Sediment Analytical Program	551
Table 9.6-8	Potential Sources of Impacts and Risks to Aquatic Ecosystems	553
Table 9.6-9	Avoidance, Mitigation and Management Measures Relating to Impacts on Aquatic Ecosystems	566
Table 9.6-10	Proposed Aquatic Ecosystems Monitoring Details	569
Table 9.6-11	Residual Moderate to Extreme Risks to Aquatic Ecosystems	572
Table 9.7-1	Tidal Planes from Australian National Tide Tables	587
Table 9.7-2	Summary of Bed Shear Stress Values and Sediment Transport Implications	596
Table 9.7-3	Survey Effort for Side-scan Sonar and Benthic Video	599
Table 9.7-4	Benthic Communities and Habitats Composition Within the Marine Portions of the Project Area	601
Table 9.7-5	Coral Genera and Seagrass Located in and Adjacent to the Project Area (Wharf and BLF)	602
Table 9.7-6	Potential Sources of Impact to Coastal Processes	604
Table 9.7-7	Avoidance, Mitigation and Management Measures	629
Table 9.7-8	Coastal Processes Residual Impact Assessment Summary	632
Table 9.8-1	Descriptive Statistics of In-situ Data Collected in Bartalumba Bay	640
Table 9.8-2	Land Systems of the Project Area Marine Environments	654
Table 9.8-3	Potential Sources of Impacts and Risks to Marine Environmental Quality	654
Table 9.8-4	Threshold Limits for Modelled SSC and Turbidity Used to Define the ZoMi and ZoHi for the Dredging Pr	ogram
Table 9.8-5	Potential Impacts to Marine Environment Quality and Avoidance, Mitigation, and Management Measur	res681
Table 9.8-6	Proposed Marine Environmental Quality Monitoring Details	685
Table 9.8-7	Marine Environmental Quality Residual Impact Assessment Summary	689
Table 9.9-1	Survey Effort for Side-Scan Sonar and Benthic Video	703
Table 9.9-2	Benthic Communities and Habitats Composition Within the Marine Portions of the Project Area	707
Table 9.9-3	Benthic Communities and Habitat Category Descriptions and Representative Photos	708
Table 9.9-4	BCH Categories, Respective Size and Proportion within the Wharf and Barge Loading Facility Area	712
Table 9.9-5	BCH Categories, Respective Size and Proportion within the Transhipment Area	716
Table 9.9-6	BCH Categories, Respective Size and Proportion within the Potential Cyclone Mooring Zone	716
Table 9.9-7	Benthic Infauna Sampling Locations	719
Table 9.9-8	Marine Turtle Species Targeted in Surveys and Potential Occurrence on Winchelsea Island	724
Table 9.9-9	Marine Turtle Nesting and Migratory Bird Aerial Survey Transects 2018-2022	724
Table 9.9-10	Likelihood of Occurrence of Threatened and Significant Species	731
Table 9.9-11	Overview of Species with Moderate or High Likelihood of Occurrence Around the Project Area	735
Table 9.9-12	Marine and Wetland Birds Recorded During Avifauna Surveys and Existing Data	747
Table 9.9-13	Overview of Marine and Migratory Bird Species Relevant to the Project	758

673

Table 9.9-14	Summary of Marine Turtle Nests and False Crawls Detected in Aerial and Ground Surveys	774
Table 9.9-15	Potential Sources of Impact to Marine Ecosystems	776
Table 9.9-16	Irreversible BCH loss associated with the construction of the BLF	784
Table 9.9-17	Avoidance, Mitigation and Management Measures relating to Impacts on Marine Ecosystems	790
Table 9.9-18	Proposed Marine Ecosystems Monitoring Details	795
Table 9.9-19	Residual Moderate and High Risks to the Marine Environment	799
Table 9.10-1	Sensitive Receptors in the Vicinity of the Project	808
Table 9.10-2	Sensitive Zones in the Vicinity of the Project	808
Table 9.10-3	Background Dust Levels Included in the Assessment	810
Table 9.10-4	Potential Sources of Impacts and Risks to Air Quality	811
Table 9.10-5	Emission Rates for Project (Year 8)	813
Table 9.10-6	Predicted Ground-level Concentrations of Annual Average TSP and Dust Deposition Rate in Isolation as Background Concentrations	
Table 9.10-7	$\label{eq:predicted} Predicted \ Ground-level \ Concentrations \ of \ Maximum \ 24-hour \ Average \ and \ Annual \ Average \ for \ PM_{10} \ in with \ Background \ Concentrations \$	
Table 9.10-8	Predicted Ground-level Concentrations of Maximum 24-hour Average and Annual Average for PM _{2.5} in with Background Concentrations	
Table 9.10-9	Potential Impacts to Air Quality and Avoidance, Mitigation, and Management Measures	826
Table 9.10-10	DAir Quality Residual Impact Assessment Summary	829
Table 9.11-1	Potential Sources of Impacts and Risks to Atmospheric Processes	835
Table 9.11-2	NGER annual Reporting Threshold – Greenhouse Gas Emissions and Energy Use	837
Table 9.11-3	Summary of Annual GHG Emissions for the Life of the Project	839
Table 9.11-4	Summary of Energy Consumption and GHG Emissions for the Life of the Project	840
Table 9.11-5	Contribution of Project to Current GHG emissions (Mt CO ₂ -e) for Australia and Northern Territory	841
Table 9.11-6	Potential Impacts to Atmospheric Processes and Avoidance, Mitigation and Management Measures	841
Table 9.11-7	Atmospheric Processes Residual Impact Assessment Summary	843
Table 9.12-1	Selected Population Characteristics, Suburbs, and Localities, 2021	848
Table 9.12-2	Age, Anindilyakwa SA2, 2021	849
Table 9.12-3	Population Projections, East Arnhem, and the Northern Territory, 2016-2036	850
Table 9.12-4	Aboriginal and Torres Strait Islander Profile, Suburbs, and Localities, 2021	852
Table 9.12-5	Level of Tertiary Education, 2021	853
Table 9.12-6	Percent of Persons Usually Resident(a)(b), Anindilyakwa (SA2), 2021	856
Table 9.12-7	Percent of Private Dwelling by Structure Type(a), Anindilyakwa (SA2), 2021	857
Table 9.12-8	Percent of Private Dwelling by Structure Type(a), Anindilyakwa (SA2), 2021	857
Table 9.12-9	Percent of Occupied Private Dwellings by Number of Bedrooms, Anindilyakwa (SA2), 2021	858
Table 9.12-10	DSocio-economic Indices, Groote Eylandt Archipelago, 2021	865
Table 9.12-11	1 Index of Economic Resources Per Local Government Area	868
Table 9.12-12	2 Index of Education and Occupation Per Local Government Area	871
Table 9.12-13	3 Labour Force Participation by Suburb, 2021	873
Table 9.12-14	4Labour Force Skills, 2021	875
Table 9.12-15	5 Major Industry Sector Economic Values, East Arnhem LGA, 2018-19	877

Table 9.12-16 Mining Employment by Type of Mining, 2021	877
Table 9.12-17 Median and Average Personal and Household Weekly Incomes Report by Indigenous Residents of the G	roote
Archipelago	880
Table 9.12-18 Gross Personal Income Report by Indigenous Residents of the Groote Archipelago, 2006 and 2021	880
Table 9.12-19 Potential Sources of Impact to Community and Economy	881
Table 9.12-20 Anticipated Capital Expenditure (\$), Regional, Rest of Northern Territory, Australia and International	892
Table 9.12-21 Anticipated Operational Expenditure (\$), Regional, Rest of Northern Territory, Australia and International	al892
Table 9.12-22 Avoidance, Mitigation and Management Measures relating to Impacts on Culture and Heritage	894
Table 9.12-23 Community and Economy Residual Impact Assessment Summary	901
Table 9.13-1 Summary of Regulatory Framework Associated with Culture and Heritage	908
Table 9.13-2 Description of Dedicated Traditional Aboriginal Owner and Community Consultations	920
Table 9.13-3 Sites on Heritage Registers	921
Table 9.13-4 AAPA Registered Sites Close to the Project Area	922
Table 9.13-5 Survey Transect Length and Proportion by Land System	923
Table 9.13-6 Cultural Heritage Sites Identified During Field Surveys	926
Table 9.13-7 Underwater Cultural Heritage Sites in NT Water and Intertidal Zones	931
Table 9.13-8 Potential Sources of Impact to Culture and Heritage	935
Table 9.13-9 Cultural Heritage Sites Identified During Field Surveys	942
Table 9.13-10 Avoidance, Mitigation and Management Measures relating to Impacts on Culture and Heritage	946
Table 9.13-11 Culture and Heritage Monitoring Requirements	951
Table 9.13-12 Culture and Heritage Residual Impact Assessment Summary	954
Table 9.14-1 Sensitive Human Receptors Vicinity of the Project	961
Table 9.14-2 Sensitive Human Zones Vicinity of the Project	962
Table 9.14-3 Assistance with Core Activities, Groote Eylandt Archipelago, 2021	968
Table 9.14-4 Characteristics of Mosquito-borne Diseases	975
Table 9.14-5 Potential Sources of Impact to Human Health	976
Table 9.14-6 Avoidance, Mitigation and Management Measures relating to Impacts on Human Health	986
Table 9.14-7 Biting Insect Monitoring Requirements	989
Table 9.14-8 Human Health Residual Impact Assessment Summary	993
Table 10.2-1 Summary of the Potential Impacts of MNES	1001
Table 10.2-2 Aerial Survey Effort	1005
Table 10.2-3 Likelihood of Occurrence Assessment in the Project Area	1006
Table 10.2-4 Significant Impact Assessment -Key Terrestrial Mammals	1012
Table 10.2-5 Significant Impact Assessment – Marine Mammals	1016
Table 10.2-6 Significant Impact Assessment – Marine Reptiles and Fish	1023
Table 10.2-7 Migratory Species Identified in the PMST Report and Fauna Atlas as Occurring, or Potentially Occurring	within 10 km
of the Project area	1032
Table 10.2-8 Listed Migratory Bird Species	1035
Table 11.4-1 Draft Environmental Inspection Regime	1042
Table 11.6-1 Preliminary Training and Competency Matrix	1047
Table 11.7-1 Draft Environmental Inspection Regime	1049

Table 11.8-1 Project Internal Reporting	1050
Table 11.8-2 External Environmental Reporting Requirements	1051
Table 11.10-1 Assessed Significant Residual Impact Per Factor	1055
Table 13.1-1 Projects Considered for Indirect and Cumulative Impacts	1059
Table 13.1-2 Summary of Potential Indirect and Cumulative Impacts	1064
Table 13.2-1 Guiding Principles of Ecologically Sustainable Development Addressed	1093
Table 13.2-2 General Duty of Proponents Addressed	1098
Table 13.2-1 Assessment of Project Against NT EPA Environmental Factor Objective	1102

Appendices

Appendix A Stakeholder Engagement Plan 116	30
Appendix B Risk Assessment Register 116	51
Appendix C EIS Terms of Reference and Cross Reference Table	52
Appendix D Air Quality Report	53
Appendix E JORC Reserve Estimate Report 116	54
Appendix F Terrestrial Ecology Report	5 5
Appendix G Erosion and Sediment Control Plan	6
Appendix H Mine Rehabilitation and Closure Plan	57
Appendix I Terrestrial Sampling Report	38
Appendix J Geochemical Report	;9
Appendix K Water Management Plan	' 0
	71
Appendix L PMST Report	
Appendix L PMST Report	
	72
Appendix M Biosecurity Management Plan 117	72 73
Appendix M Biosecurity Management Plan	72 73 74
Appendix M Biosecurity Management Plan	72 73 74 75
Appendix M Biosecurity Management Plan 117 Appendix N Weed Management Plan 117 Appendix O Groundwater Investigation Report 117 Appendix P Surface Water Assessment Report 117	72 73 74 75 76
Appendix M Biosecurity Management Plan 117 Appendix N Weed Management Plan 117 Appendix O Groundwater Investigation Report 117 Appendix P Surface Water Assessment Report 117 Appendix Q Groundwater Modelling Report 117	72 73 74 75 76 77
Appendix M Biosecurity Management Plan 117 Appendix N Weed Management Plan 117 Appendix O Groundwater Investigation Report 117 Appendix P Surface Water Assessment Report 117 Appendix Q Groundwater Modelling Report 117 Appendix Q Groundwater Modelling Report 117 Appendix R Coastal Processes Assessment Report 117	72 73 74 75 76 77
Appendix M Biosecurity Management Plan 117 Appendix N Weed Management Plan 117 Appendix O Groundwater Investigation Report 117 Appendix P Surface Water Assessment Report 117 Appendix Q Groundwater Modelling Report 117 Appendix R Coastal Processes Assessment Report 117 Appendix R Coastal Processes Assessment Report 117 Appendix R Coastal Processes Assessment Report 117 Appendix S Sediment Transport Modelling Report 117	72 73 74 75 76 77 78 79
Appendix M Biosecurity Management Plan 117 Appendix N Weed Management Plan 117 Appendix O Groundwater Investigation Report 117 Appendix P Surface Water Assessment Report 117 Appendix Q Groundwater Modelling Report 117 Appendix R Coastal Processes Assessment Report 117 Appendix S Sediment Transport Modelling Report 117 Appendix S Sediment Transport Modelling Report 117 Appendix T Marine Quality Sampling Report 117	72 73 74 75 76 77 78 79 30

Appendix X Social Impact Assessment	1183
Appendix Y Winchelsea Island Cultural Heritage Report and Anthropological Assessment	1184
Appendix Z Benthic Loss Assessment	1185
Appendix AA Cultural Heritage Management Plan	1186
Appendix BB Biting Insect Report	1187
Appendix CC Biting Insect Management Plan	1188
Appendix DD Conservation Significant Marine Species Report	1189
Appendix EE Migratory and Shorebirds Report	1190
Appendix FF Marine Turtles Report	1191

Key Project Terms

Term	Definition or Elaboration		
Adaptive Management	Systematic process for incrementally improving management practices by learning from the outcomes of past and current practices.		
AUS China International Mining	AUS China International Mining Pty Ltd		
CDM Smith	CDM Smith Australia Pty Ltd		
Disturbance Envelope	Defined as the maximum area within which the Project disturbance could occur. The disturbance envelope for the Project encompasses 739 ha, inclusive of the terrestrial mining area and infrastructure, marine infrastructure, dredge spoil disposal area and transhipment area.		
Environmental Aspect	An element of the Winchelsea Minings activities, products or services that can interact with the environment.		
Environmental Impact	Change to the environment whether adverse or beneficial, wholly or partially resulting from Winchelsea Mining's environmental aspects. Environmental impacts can be caused directly or indirectly from a Project activity or cumulatively with other non-Project related activities in a set area.		
Environmental Factor	The NT EPA listed environmental objectives to identify environmental matters that have value to the Northern Territory and that need to be protected; and to state the objective to be achieved for each matter The NT EPA has prepared these environmental objectives and organised these in structured divisions of the environment, called environmental factors.		
GHAC	Groote Holdings Aboriginal Corporation		
Infrastructure Footprint	Defined as the area subject to direct placement of infrastructure and material inclusive of the terrestrial and wharf components. This area excludes the dredge spoil disposal area and transhipment area as no permanent physical infrastructure will be placed in these areas. The infrastructure footprint encompasses 339 ha within the Project area.		
Project	The Project refers to the Winchelsea Island Manganese Mine Project. The Project includes establishme a manganese mine extracting from nine separate extraction areas covering, associated terrestrial infrastructure, wharf and barge loading facility, dredged access channel, dredge spoil disposal, transhipment and cyclone moorings. The Project is inclusive of all infrastructure within the nominated Project area and directly associated activities occurring outside that area.		
Project Area	The Project area is defined as wholly including mineral lease for exploration activities 32704, coastal and marine areas adjacent and connecting to mineral lease 32704, the dredge spoil disposal area and transhipment area. The entire Project area covers 1,680 ha.		
Significant Impact	A significant impact of an action is an impact of major consequence having regard to: (a) the context and intensity of the impact; and (b) the sensitivity, value and quality of the environment impacted on and the duration, magnitude and geographic extent of the impact.		
Sitzler	Sitzler Pty Ltd		
Study Area	Refers to the area of survey or investigation for a specific study. This area may be beyond the Project area or disturbance envelope.		
Tailings Storage Facility	A specially engineered and constructed impoundment into which tailings (residue) from the ore processing plant are deposited for placement in perpetuity. The storage facility is constructed with confining embankments consisting of earthen material (e.g., rock and soil) and capped following closure.		
Winchelsea Island	Akwamburrkba		

Term	Definition or Elaboration	
Winchelsea Mining	Winchelsea Mining Pty Ltd	
Xenith	Xenith Consulting Pty Ltd	

Acronyms, Abbreviations and Units

Abbreviation, Acronym or Unit	Definition		
AAAC	Anindilyakwa Advancement Aboriginal Corporation		
ААРА	Aboriginal Areas Protection Authority		
ABS	Australian Bureau of Statistics		
AFANT	Armature Fisherman's Association Northern Territory		
ALARP	As Low As Reasonably Practicable		
Al ₂ O ₃	Aluminium Oxide		
ANC	Acid Neutralising Capacity		
ARC	Arnhem Coast		
ASRIS	Australian Soil Resource Information System		
ASS	Acid Sulfate Soils		
CAN	Australian Company Numbers		
ADT	Articulated Dump Truck		
ALC	Anindilyakwa Land Council		
Al ₂ O ₃	Aluminium Oxide		
ALRA	Aboriginal Land Rights (Northern Territory) Act 1976		
Bcm	Bank Cubic Meter		
BLF	Barge Loading Facility		
BLM	Blue Mud Land System		
ВоМ	Bureau of Meteorology		
BWM	International Convention for the Control and Management of Ships' Ballast Water and Sediments		
CD	Chart Datum		
CEO	Chief Executive Officer		
СР	Cemented Pisolite		
CNZ	Central North Mineralisation Zone		
СМZ	Central Main Mineralisation Zone		
Cth	Commonwealth		
CSD	Cutter Suction Dredge		
CSZ	Central South Mineralisation Zone		
DAFF	Department of Agriculture, Fisheries and Forestry		
DAWE	Department of Agriculture, Water and the Environment		
DCCEEW	Department of Climate Change, Energy, the Environment and Water		

Abbreviation, Acronym or Unit	Definition		
DEPWS	Department of Environment, Parks and Water Security		
DIPL	Department of Infrastructure, Planning and Logistics		
DITT	Department of Industry, Tourism and Trade		
Dmt	Dry Metric Tonne		
DWCD	Declared Water Control District		
DWT	Dead Weight Tonne		
EIS	Environmental Impact Statement		
EIL	Ecological Investigation Level		
EL	Exploration Licence		
EMP	Environmental Management Plan		
EMS	Environmental Management System		
EP Act	Environmental Protection Act 2019		
EPBC Act	Environmental Protection and Biosecurity Conservation Act 1999		
EPL	Environment Protection Licence		
ERA	Environmentally Restricted Area		
EV	Electric Vehicle		
ESC	Erosion and Sediment Control		
ESCP	Erosion and Sediment Control Plan		
Fe	Iron		
FIFO	Fly-In Fly-Out		
g/cc	Gram per Cubic Centimetre		
GDE	Groundwater Dependant Ecosystem		
GEMCO	Groote Eylandt Mining Company		
GHG	Greenhouse Gas		
Grt	Groote land		
ha	Hectares		
HDPE	High Density Polyethylene		
hp	Horsepower		
HVAS	High-Volume Air Sampler		
IAP2	International Association for Public Participation		
IBRA	Interim Biogeographic Regionalisation for Australia		
IEA	International Energy Agency		
IECA	International Erosion Control Association		

Abbreviation, Acronym or Unit	Definition		
ILUA	Indigenous Land Use Agreement		
IPA	Indigenous Protection Area		
IUCN	International Union for Conservation of Nature		
JORC	loint Ore Reserve Committee		
Kfh	Keefers Hut Land System		
kg	Kilogram		
km	Kilometres		
ktpa	Kilo tonnes per annum		
kW	KiloWatt		
LA	Los Angeles		
LAT	Lowest astronomical tide		
LDMA	Local Decision-Making Agreements		
Lit1	Littoral 1 Land System		
LOM	Life of Mine		
LWM	Low Water Mark		
m	Metre		
m ³	Cubic meter		
m³/hr	Cubic meter per hour		
MagL	Manganiferous Laterite		
mbgl	metres below ground level		
MIA	Mine Infrastructure Area		
ML	Megalitres		
MLWM	Mean Low Water Mark		
ML/yr	Megalitres per year		
ММР	Mining Management Plans		
MMZ	Main Mineralised Zone		
MN	Mangcrete		
Mn	Manganese		
MNES	Matters of National Environmental Significance		
MP	Member of Parliament		
MRCP	Mine Rehabilitation and Closure Plan		
MSL	Mean Sea Level		
Mt	Million Tonnes		

Abbreviation, Acronym or Unit	Definition	
mtpa	Million Tonnes per Annum	
MW	Megawatt	
NAF	Non-Acid Forming	
NAGD	National Assessment Guidelines for Dredging	
NEZ	North East Mineralised Zone	
NEPM	Nation Environment Protection Measure	
NLC	Northern Land Council	
NT	Northern Territory	
NT EPA	Northern Territory Environment Protection Authority	
NW	North West	
OGV	Ocean going vessel	
Р	Phosphorus	
P ₂ O ₅	Phosphorus Pentoxide	
PC	Personal Computer	
PCS	Process Control System	
PID	Proportional-Integral-Derivative	
PLT	Point Load Result	
ppt	Parts per Thousand	
РМ	Pisolitic Manganese	
PMLU	Post-Mining Land use	
PM _{2.5}	Particulate Matter 2.5 micrometres or less	
PM ₁₀	Particulate Matter 10 micrometres or less	
PSU	Practical Salinity Units	
Pty Ltd	Propriety Limited	
Que	Queue Land System	
RC	Reverse Circulation	
RMP	Risk Management Plan	
ROM	Run of Mine	
RDU	Royalties Development Unit	
RORO	Roll-on Roll-off	
RUSLE	Revised Universal Soil Loss Equation	
Sea Dumping Act	Environmental Protection (Sea Dumping) Act 1981	
SEP	Stakeholder Engagement Plan	

Abbreviation, Acronym or Unit	Definition	
SiO ₂	Silicon Dioxide	
SOP	Standard Operating Procedures	
SM	Silicious Manganese	
SSC	Suspended Sediment Concentration	
SSTV	Site-Specific Trigger Values	
TEC	Threatened Ecological Communities	
t	Tonnes	
ToR	Terms of Reference	
TPWC Act	Territory Parks and Wildlife Conservation Act 2000	
TSF	Tailings storage facility	
TSP	Total Suspended Particulates	
USGS	Jnited States Geological Survey	
WA	Western Australia	
WMP	Water Management Plan	
WDL	Waste Discharge Licence	

ACKNOWLEDGEMENT

CDM Smith and Winchelsea Mining acknowledges the traditional owners and custodians of country throughout Australia and acknowledges their continuing connection to land, waters and community. We pay our respects to the people, the cultures and the elders past, present and emerging.

We acknowledge and thank the Anindilyakwa Land Council and the Traditional Owners of Winchelsea Island, for providing permission to access survey areas and collect data for the Winchelsea Island (Akwanburrkba) Manganese Mine Project Environmental Impact Statement and supporting studies.

Section 10 Commonwealth Government Matters

This section has been prepared to address the ToR requirements to appropriately consider potential impacts to Matters of National environmental Significance (MNES) and builds upon the content included in Section 9.3- Terrestrial Ecosystems and Section 9.9- Marine Ecosystems addressing threatened species listed under the *Environment Protection and Biosecurity Conservation Act 1999* (EPBC Act).

10.1 Environment Protection and Biodiversity Conservation Act 1999

The EPBC Act is the Australian Government's central piece of environmental legislation that provides a legal framework to protect and manage nationally and international important flora, fauna, ecological communities and heritage places – defined in the EPBC Act as MNES. Protected matters under the EPBC Act include:

- World heritage properties;
- National heritage properties;
- Wetlands of international importance (RAMSAR wetlands);
- Nationally threatened species and ecological communities;
- Migratory species protected under international agreements;
- Commonwealth marine areas;
- Great Barrier Reef Marine Park;
- Nuclear actions; and
- A water resource in relation to coal seam gas and large coal mining development.

Under the EPBC Act, any action that is likely to have a significant impact on MNES must be:

- Undertaken in accordance with an approval from the Minister for the Environment; or
- Approved through a process accredited by the Minister for the Environment, such as approval through a bilateral agreement with a State or Territory.

Under the EPBC Act and in accordance with the 'Matters of National Environmental Significance, Significant Impact Guidelines 1.1 (Significant Impact Guidelines 1.1)' (DoE, 2013), a proponent who proposes to take an action is only required to refer the matter for consideration under the EPBC Act where the action will or is likely to have a significant impact on MNES. The threshold test of a 'significant impact' is held to mean an impact that is important, notable or of consequence having regard to its context or intensity⁵⁴. Winchelsea Mining referred the action to the Commonwealth Government for consideration under the EPBC Act on 4 April 2021 (reference EPBC 2019/8877). On 23 June 2021 the Department of Climate Change, Energy, the Environment and Water (DCCEEW) determined the Project had potential to cause significant impacts to MNES and deemed it a controlled action requiring assessment and approval und the EPBC Act (refer to Section 10.2 for the controlling provisions). On 20 August 2021, the delegate for the Minister for the

⁵⁴ Booth v Bosworth (2001) 114 FCR 39 "The Flying Fox Case" considering the operation of s43A and s43B of the EPBC Act.

Winchelsea Island (Akwamburkba) Manganese Mine: Draft Environmental Impact Statement

Environment made an Assessment Approach Decision and decided the Project would be assessed by accredited assessment under the EP Act at the level of an EIS.

10.2 Matters of National Environmental Significant

10.2.1 Overview

The following section addresses potential significant impacts of the Project to each of the nine MNES listed under the EPBC Act, as per the *Significant Impact Guidelines 1.1* (DoE, 2013). Table 10.2-1 lists the MNES that have been identified as relevant to the Project. These MNES align with the controlling provisions that were deemed relevant by the DCCEEW:

- Listed threatened species and communities (sections 18 & 18A); and
- Listed migratory species (sections 20 & 20A).

The Commonwealth Government Department of Climate Change, Energy, the Environment and Water (DCCEEW) Protected Matters Search Tool (PMST) identifies MNES that may occur in a given area. The PMST is based on predicted distributions of EPBC listed flora and fauna species and communities and/or their habitat, rather than known records. The PMST may predict the occurrence of a species or community in an area when there are no documented records from the area.

A PMST search was conducted on 22 February 2023 using a 5 km radius of the Project area. This search was supplemented by a search of records of occurrence of listed threatened species using the NT Species Atlas on NR Maps (refer to Appendix L).

Matters of National Environmental Significance	Relevant for consideration	Details
World Heritage Properties	Х	The Project does not intersect any World Heritage Properties. The closest World Heritage Property is Kakadu, located approximately 370 km east of the Project area.
National Heritage Properties	Х	The Project does not intersect any National Heritage Properties. The closest National Heritage Property is Kakadu, located approximately 370 km east of the Project area.
Wetlands of International Importance / Ramsar Wetlands	Х	The Project does not intersect any Wetlands of International Importance. The closest Ramsar wetland is Kakadu, located approximately 370 km east of the Project area.
Great Barrier Reef Marine Park	X	Not applicable, the Project area is not located within the Great Barrier Reef Marine Park. The Project area is located approximately 760 km to the closest point of the Great Barrier Reef Marine Park (north-eastern coast of Cape York).
Commonwealth Marine Areas	X	There are no Commonwealth Marine Areas in close proximity to the Project area. The Project area is located approximately 50 km west of the closest Commonwealth Marine Area.
Nuclear Actions (including uranium mining)	Х	Not Applicable.
A water resource, in relation to coal seam gas development and large coal mining development	X	Not Applicable.

Table 10.2-1 Summary of the Potential Impacts of MNES

Matters of National Environmental Significance	Relevant for consideration	Details
Threatened Ecological Communities	x	There are no Threatened Ecological Communities in the Project area and none are considered likely to occur.
Listed Threatened Species	*	A total of 30 threatened fauna species were identified as having the potential to occur within 5 km of the Project area. Threatened species and communities were listed as a controlling provision for the action.
Listed Migratory Species	✓ 	The EPBC PMST search identified 46 migratory species as occurring or potentially occurring within 5 km of the Project area. Migratory species were listed as a controlling provision for the action.

PMST search results included threatened species listed under the EPBC Act as either critically endangered, endangered or vulnerable. To determine whether or not an action is likely to have significant impact on the listed species, it is necessary to consider if there is a chance the Project will:

- Adversely affect habitat critical to the survival of a species;
- Modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline; or
- Introduce disease that may cause the species to decline.

Critically endangered and endangered species exhibit additional criteria to the standard criteria, including:

- A long-term decrease in the size of a population;
- Reduce the area of occupancy of the species;
- Fragment an existing population into two or more populations;
- Disrupt the breeding cycle of a population;
- Result in invasive species that are harmful to a critically endangered or endangered species becoming established in the species habitat; or
- Interfere with the recovery of the species.

Vulnerable species also exhibit additional criteria to the standard criteria, including:

- Lead to a long-term decrease in the size of an important population of a species;
- Reduce the area of occupancy of an important population;
- Fragment an existing important population into two or more populations;
- Disrupt the breeding cycle of an important population;
- Result in invasive species that are harmful to a vulnerable species becoming established in the species habitat; or
- Interfere substantially with the recovery of the species.

Under the EPBC Act, a <u>population</u> is defined as '...an occurrence of the species in a particular area. In relation to critically endangered, endangered or vulnerable threatened species, occurrences include but are not limited to:

- A geographically distinct regional population, or collection of local populations; or;
- A population, or collection of local populations, that occurs within a particular bioregion.'

Under the EPBC Act, an <u>important population</u> is defined as '... a population that is necessary for a species' long term survival and recovery. This may include populations identified as such in recovery plans and/or that are:

- Key source populations either for breeding or dispersal;
- Populations that are necessary for maintaining genetic diversity; and/or
- Populations that are near the limit of the species range.'

10.2.2 Desktop and Field Surveys Assessment

10.2.2.1 Desktop Assessment

A desktop assessment was undertaken to determine which listed threatened flora and fauna species, threatened ecological communities and migratory species had the potential to occur within and surrounding the Project area using the EPBC Act PMST. A 10 km buffer was applied to the PMST search to capture potentially occurring species within the vicinity of the Project, this search included the 5 km area utilised in the Terrestrial Ecology Report (Appendix F) and the 10 km for the Conservation Significant Marine Species Report (Appendix DD). There were no threatened flora species or threatened ecological communities identified within the 10 km radius; however, there were 30 threatened fauna species and 47 listed migratory species identified.

Searches of NT Government, Commonwealth Government and other databases were conducted to obtain information on conservation values and threatened species potentially occurring in the Project area and Study area. Fauna and flora species and migratory species known to occur on Winchelsea Island were investigated by reviewing existing reports and datasets. Data searches were conducted prior to commencement of field surveys in 2018 and again prior to the 2022 survey to inform the methodology and target threatened species. This review was repeated in the post field reporting period (February-March 2023).

10.2.2.2Field Surveys

Field assessments of the Project area and its surrounds were undertaken on multiple occasions between 2018 and 2022. The following subsections outline the flora and fauna methodologies and results.

Terrestrial Flora

Field surveys of the Project area were first conducted in the late dry season/early wet season of 2018 to identify vegetation within the main mineral lease area. All flora assessments were undertaken by an experienced botanist between November 2018 to July 2022 (EMS, 2023a). Survey methods included 115 standard flora quadrats (20 x 20), targeted searches, transect surveys and vegetation mapping across the Project area.

Terrestrial flora surveys were undertaken between 2018 and 2022 to identify the presence of conservation significant flora on Winchelsea Island. The surveys recorded 276 plant species, however none of which are listed as conservation significant (endangered, vulnerable or threatened) under the EPBC Act (EMS, 2023a).

Terrestrial Fauna

Ecological surveys were conducted on Winchelsea Island, commencing in 2018 to provide an assessment on the coastal and saline wetland habitats and determine whether these areas provide suitable habitat for threatened fauna, migratory

shorebirds and wetland bird species. The ecological survey further informed whether the coastal and saline wetland habitats are of significance, as per the Commonwealth Government significant impact criteria (DoE, 2013).

Terrestrial fauna surveys were undertaken using a variety of methods including, diurnal bird surveys, rodent burrow spoil surveys, owl acoustic recording, owl call broadcast and habitat tree assessments, camera trapping, threatened microbat bat surveys and freshwater surveys. Detailed descriptions of methodology used during the terrestrial ecology surveys is presented in Appendix F.

The terrestrial fauna surveys recorded three conservation significant fauna listed under the EPBC Act, being the Northern Quoll (*Dasyurus hallucatus*) (Endangered), Northern Masked Owl (*Tyto novaehollandiae kimberli*) (Vulnerable) and Ghost Bat (*Macroderma gigas*) (Vulnerable) all of which were either recorded within the Project area or surrounds. Additionally, one terrestrial species, the Northern Blue-tongue Lizard (*Tiliqua scincoides intermedia*) was recorded within the Project area, however this species is currently under assessment for listing as threatened under the EPBC Act (DCCEEW, 2023).

The diurnal bird species detected within the terrestrial Project area are not listed as threatened (endangered or vulnerable) under relevant legislation. Two terrestrial species, the Fork-tailed Swift (*Apus pacificus*) and Arafura Fantail (*Rhipidura dryas*), both listed as migratory under the EPBC Act, were also recorded (refer to Table 10.2-7). Numerous EPBC Act listed migratory and threatened bird and marine turtle species were recorded during the survey period and are further discussed below.

The terrestrial fauna surveys also targeted other conservation significant terrestrial fauna including the Brush-tailed Rabbit-Rat, Northern Hopping-mouse and Northern Brush-tailed Possum; however, these species were not detected. The surveys further targeted the Bare-rumped Sheathtail Bat and Northern Leaf-nosed Bat; however, these species were also not detected.

Marine Turtles

The 2018 ecological survey targeting marine turtles was designed and undertaken in accordance with the NT Government and designed in consultation with the Anindilyakwa Land and Sea Rangers. The Anindilyakwa Land and Sea Rangers assisted with field surveys in 2018.

Targeted surveys were undertaken for six marine turtles based on existing data for nesting sites on Winchelsea Island, these included Hawksbill Turtle (*Eretmochelys imbricata*), Green Turtle (*Chelonia mydas*), Flatback Turtle (*Natator depressus*), Olive Ridley Turtle (*Lepidochelys olivacea*), Leatherback Turtle (*Dermochelys coriacea*) and Loggerhead Turtles (*Caretta caretta*), although Loggerhead Turtles are rarely recorded with no known nesting sites within the Groote Archipelago region. Additional surveys were undertaken in conjunction with other field surveys in July, August and October of 2022 (Appendix FF).

Aerial surveys for marine turtle nesting sites were undertaken on eight occasions during the survey period, covering a total of 374 kilometres (km) in a Robinson R44 or Jet Ranger helicopter, flying at approximately 50 nautical miles per hours (90 km/hour) at an altitude of 150 feet (45 m) above sea level (refer to Table 10.2-2 for survey effort). The entire coastline of Winchelsea Island was surveyed in November 2018 and later repeated during two transects in October and December 2021. Timing of the aerial surveys were in conjunction with a known period when important sites in Groote Eylandt are subject to high volumes of turtle nesting. All observed nesting locations were marked using a GPS and attributed to species where possible.

In addition to aerial surveys, ground-based surveys were undertaken at four principal areas of Winchelsea Island, covering a total of 8 km of coastline, with areas selected based on the known/expected high density of marine turtle nesting. Ground-based surveys of the western coastline of Winchelsea Island were undertaken in October-November 2018, January 2019 and July, August and October in 2022 using an all-terrain vehicle to survey the foreshore and rear dunes. Further opportunistic surveys were undertaken in conjunction with avian surveys surrounding the existing camp area in the south-west of the island (ERM, 2023c). Due to cultural reasons, nesting sites on Mukwenumaja Island could not be surveyed from the ground (Appendix FF).

Migratory Species

Ecology surveys were undertaken between October 2018 and November 2022 to identify the presence of migratory shorebirds and other migratory marine or wetland birds within the Project area and surrounds. The surveys studied the coastal and saline wetland habitats of Winchelsea Island through aerial surveys, ground counts, and habitat assessments. Survey methods for migratory shorebirds and other migratory and wetland bird species on Winchelsea Island are outlined in Appendix EE.

Ground counts were conducted in accessible locations on Winchelsea Island to identify the presence of migratory shorebirds and other migratory marine and wetland birds. Surveys targeted the coastal and wetland habitats on Winchelsea Island as these are considered suitable habitats for the target species, particularly tidal flats, brackish wetlands, mangroves, salt pans, reef flats and rocky shores (EMS, 2023c). Ground counts were assisted by binoculars and spotting scopes. Ground counts were undertaken in 15 minute periods at each habitat during five main survey periods, including:

- November / December 2018;
- April 2019;
- October / November 2021;
- July 2022; and
- August / October 2022.

A total of 46 x 15 minute searches were undertaken during the survey effort, totalling 11.5 survey hours. Incidence (i) was calculated by dividing the number of counts in which a species was observed (c) by the total number of samples (s) (i = c/s) (EMS, 2023c) and avian species accumulation curves and confidence intervals were computed using R-Studio 2022.07.2. Aerial surveys were undertaken over nine survey periods in November 2018 and October and December 2021, covering a total of 422.6 km (refer to Table 10.2-2). Aerial survey efforts are further described in Appendix EE.

Survey Date	Aerial Transect Kilometres	Season	Shorebird Migration Stage
09/11/2018	37.4	Austral Summer (wet season)	Southern hemisphere
10/11/2018	42.8	Austral Summer (wet season)	Southern hemisphere
26/10/2021	65.6	Austral Summer (wet season)	Southern hemisphere
11/12/2021	50	Austral Summer (wet season)	Southern hemisphere
21/07/2022	77	Austral Winter (dry season)	Northern hemisphere
26/07/2022	23	Austral Winter (dry season)	Northern hemisphere
31/08/2022	38.4	Austral Winter (dry season)	Northern hemisphere
01/10/2022	39.9	Austral Summer (wet season)	Southern hemisphere
15/12/2022	48.5	Austral Summer (wet season)	Southern hemisphere
Total	422.6		

Table 10.2-2 Aerial Survey Effort

10.2.3 Likelihood of Occurrence Assessment

A likelihood assessment was completed pre- and post-surveys and utilising available species records (Table 10.2-3). Species identified in the PMST searches were categorised into their likelihood to occur within the Project area following field surveys. Species were classified into the following categories:

- Known Species confirmed during field surveys for the Project and/or from previous field surveys;
- Likely Habitat suitable for the species was identified during field surveys and/or by previously field surveys of the area, and desktop reviews for the wider region;
- Potentially Suitable habitat has potential to occur within the area and records of the species occurring within the wider region; and
- Unlikely No suitable habitat identified or is not known to occur within the wider region.

The classifications in the likelihood of occurrence assessment are further supported by database records and field survey findings.

Scientific	Common	Status ⁵⁵	5	Assessment of Likelihood of Occurrence
Name	Name Name		NT	
Birds		·		
Calidris canutus	Red Knot	E, M	E	Unlikely - Regional records on Groote Eylandt but present in low numbers. Could occur occasionally on marine salt pans or tidal flats on Winchelsea Island, habitat not present in the Project area.
Calidris ferruginea	Curlew Sandpiper	CE	V	Unlikely - Regional records on Groote Eylandt but present in low numbers. Know to occasionally occur on marine tidal flats on south-east of Winchelsea Island (EMS 2023a), habitat not present in the Project area.
Erythrotriorchis radiatus	Red Goshawk	V	V	Unlikely - No previous records on Groote Eylandt. Species not detected in extensive avian surveys in the Project area.
Erythrura gouldiae	Gouldian Finch	E	V	Unlikely - Only one historical record on Groote Eylandt dating to the early 1900s. Not detected in extensive avian surveys in the Project area.
Limosa lapponica baueri	Bar-tailed Godwit (baueri)	V	V	Unlikely - Regional records on Groote Eylandt but present in low numbers. Could occur occasionally on marine salt pans or tidal flats on Winchelsea Island, habitat not present in the Project area
Limosa lapponica menzbieri	Northern Siberian Bartailed Godwit	CE	CE	Unlikely - Regional records on Groote Eylandt but present in low numbers. Could occur occasionally on marine salt pans or tidal flats on Winchelsea Island, habitat not present in the Project area.
Numenius madagascarien sis	Eastern Curlew	CE, M	CE	Unlikely - Small numbers on saline tidal flats on the western and southern coasts of Winchelsea Island (EMS 2023a). Numbers do not trigger MNES significance levels (DOE 2015c). Habitat not present in the Project area.

Table 10.2-3 Likelihood of Occurrence Assessment in the Project Area

⁵⁵ Conservation status under either the Environment Protection and Biodiversity Conservation Act 1999 ('EPBC') or Territory Parks and Wildlife Conservation Act ('NT'): CE = Critically Endangered, E = Endangered, V = Vulnerable, M = Migratory, Ma = Marine, Cet = Cetacean, CD = Conservation Dependent, '-' = not listed

Scientific	Common	Status ⁵⁵	5	Assessment of Likelihood of Occurrence	
Name	Name	EPBC	NT		
Charadrius mongolus	Lesser Sand Plover	E	E	Unlikely - Small numbers on saline tidal flats on the western and southern coasts of Winchelsea Island (EMS 2023a). Numbers do not trigger MNES significance levels (DOE 2015c). Habitat not present in the Project area.	
Charadrius leschenaultii	Greater Sand Plover	V, M	V	Unlikely - Small numbers on saline tidal flats on the western and southern coasts of Winchelsea Island (EMS 2023a). Numbers do not trigger MNES significance levels (DOE 2015c). Habitat not present in the Project area.	
Rostratula australis	Australian Painted Snipe	E	E	Unlikely - No previous records on Groote Eylandt, preferred habitat is not present in the Project area.	
Tyto novaehollandia e kimberli	Northern Masked Owl	V	V	Known - Northern Masked Owls forage across most of the Project area. Two potential roost/nest sites identified. One or two pairs occur in the local area.	
Terrestrial Mam	mals				
Dasyurus hallucatus	Northern Quoll	E	CE	Known - Common across the Study area. Based on Heiniger et al., 2021, the direct Project clearance footprint (approximately 530 ha of terrestrial preferred habitat) would impact home range areas approximating 174 Northern Quolls (based on a density estimate of 0.33 quolls/ha).	
Trichosurus vulpecula arnhemensis	Northern Brush-tailed Possum	V	E	Unlikely - Extensive camera trapping in the Project area has not detected this species. No records from other islands in the Groote Archipelago other than Groote Eylandt. Status on Groote Eylandt poorly known.	
Macroderma gigas	Ghost Bat	V	-	Known - Detected at two locations in sandstone in the north of the island. Individuals observed foraging over escarpment areas. The Project area may represent foraging habitat for this species.	
Conilurus penicillatus	Brush-tailed Rabbit-rat	V	E	Unlikely - Extensive camera trapping in the Project area has not detected this species. Habitat areas may not be suitable, particularly in the southern Project area. The nearest records are 8 km to the southeast on Groote Eylandt (based on data from Anindilyakwa Land and Sea Rangers monitoring 2022).	
Notomys aquilo	Northern Hopping- mouse	E	V	Unlikely - No historical or recent records on Winchelsea Island or any other island in the Archipelago other than Groote Eylandt. Habitat within the Project area unlikely to be suitable for this species.	
Saccolaimus saccolaimus nudicluniatus	Bare-rumped Sheath-tailed Bat	V	-	Unlikely - No previous records on Groote Eylandt, not detected in targeted surveys with specific analysis routines to detect this species (Specialised Zoological, 2023).	
Xeromys myoides	Water Mouse	V	-	Unlikely - No previous records on Groote Eylandt, preferred habitat (mangroves and adjacent wetland habitat) is not present in the Project area.	
Marine Mammal	s	_			
Orcaella heinsohni	Australian Snubfin Dolphin	M, Cet	-	Likely - Occurs in nearshore waters of the Groote Archipelago that overlap with marine Project elements and operations. Snubfin Dolphins have been recorded in the 10 km search area from the Project, with two records in western Bartalumba Bay and two records in North West Bay.	
Sousa sahulensis	Australian Humpback Dolphin	M, Cet	-	Known - Occurs in nearshore waters of the Groote Archipelago that overlap with marine Project elements and operations. One record of occurrence in the proposed transhipment portion of the Project area.	

Scientific	Common	Status ⁵	5	Assessment of Likelihood of Occurrence	
Name	Name	EPBC	NT		
Dugong dugong	Dugong	М, Ма	-	Known - The Dugong is known to occur within the nearshore marine areas of the Project. Dugongs have been sighted within the Project search area, in close proximity to the marine elements and bi-annual aerial surveys for dugongs in the NT Gulf of Carpentaria confirms their presence in the Groote Eylandt area.	
Tursiops aduncus	Indo-Pacific Bottlenose Dolphin	Cet	-	Likely - Considered likely for the nearshore waters of the Project elements and operations. They have been recorded close to the Projects marine elements.	
Pseudorca crassidens	False Killer Whale	Cet	-	Likely - Considered likely within the marine elements of the Project. There have been multiple sightings within the Project search area and sightings nearby in Darwin.	
Balaenoptera musculus brevicauda	Blue Whale	E, M, Cet	-	Unlikely - The Pygmy Blue Whale is considered unlikely to occur within the marine elements of the Project. The unlikely rating is because the Project does not overlap with the species mapped Biologically Important Area (BIA), the region does not represent known habitat for the species and there have been no recorded sightings of Pygmy Blue Whales in the Project search area.	
Reptiles	,			·	
Acanthophis hawkei	Plains Death Adder	V	V	Unlikely - No previous records on Groote Eylandt, preferred habitat is not preser in the Project area.	
Caretta caretta	Loggerhead Turtle	E, M	V	Unlikely - Regional records in the Groote Archipelago, preferred beach nesting habitat is not present in the Project area. May occur in offshore marine habitats.	
Chelonia mydas	Green Turtle	V, M	-	Unlikely - Regional records in the Groote Archipelago, preferred beach nesting habitat is not present in the Project area. May occur in offshore marine habitats. Nests identified on the northern and north-eastern coast of Winchelsea Island (EMS, 2023b).	
Dermochelys coriacea	Leatherback Turtle	E, M	CE	Unlikely - Regional records in the Groote Archipelago, preferred beach nesting habitat is not present in the Project area. May occur in offshore marine habitats.	
Eretmochelys imbricata	Hawksbill Turtle	V, M	V	Unlikely - Regional records in the Groote Archipelago, preferred beach nesting habitat is not present in the Project area. May occur in offshore marine habitats. Nests identified on the northern and north-eastern coast of Winchelsea Island (EMS, 2023b).	
Lepidochelys olivacea	Olive Ridley Turtle	E, M	V	Unlikely - Regional records in the Groote Archipelago, preferred beach nesting habitat is not present in the Project area. May occur in offshore marine habitats. Possible nests identified on the northern and north-eastern coast of Winchelsea Island (EMS 2023b).	
Natator depressus	Flatback Turtle	V, M	-	Unlikely - Regional records in the Groote Archipelago, preferred beach nesting habitat is not present in the Project area. May occur in offshore marine habitats. Nests identified on the northern and north-eastern coast of Winchelsea Island (EMS, 2023b).	
Crocodylus	Saltwater	M, Ma	-	Known - Saltwater crocodiles have been classified known within the	
porosus	Crocodile			nearshore marine based elements of the Project. Saltwater crocodiles have	
				been sighted within the Project search area and there are known resident crocodiles close to the Project's marine elements (Personal communications with locals).	

Scientific	Common	Statu	s ⁵⁶	Assessment of Likelihood of Occurrence	
Name	Name	EPB C	NT		
Fish					
Carcharodon carcharias	White Shark	V, M	-	Unlikely - Considered unlikely within the Project's marine elements. There have been no confirmed sightings of White Sharks in the NT. Therefore, even with potential habitat for White Sharks present throughout the region, it is unlikely that White Sharks would be present in the Project area.	
Glyphis glyphis	Speartooth Shark	CE	V	Unlikely - There are no known populations of Speartooth Sharks surrounding the Project area. The nearest known population are in the Van Deimen Gulf, NT and Port Musgrave, Queensland (QLD). Genetic analysis found that populations greater than 100 km have little exchange indicating little connectivity between populations, and therefore is very unlikely the species would travel through the Project area.	
Pristis clavata	Dwarf Sawfish	V, M	V	Unlikely - While there have been no recorded sightings of Dwarf Sawfish in the region, the Project area is close to suitable dwarf sawfish habitat. However, there have been no records of this species close to the Project or within the southern Go of Carpentaria	
Pristis pristis	Freshwater Sawfish	V, M	V	Unlikely - There have been no confirmed sightings of freshwater sawfish in the Project search area and the surrounding environment. The Project area is not a known nursery area or defined as critical habitat for the species, and it is unlikely that Freshwater Sawfish would be present in the Project area.	
Pristis zijsron	Green Sawfish	V, M	V	Likely - While there have been no recorded sightings of Green Sawfish close to the marine elements of the Project, the Project area is close to modelled species distributions and suitable Green Sawfish habitat. Green Sawfish have also been captured in the Gulf of Carpentaria at Groote Eylandt.	
Anoxypristis cuspidata	Narrow Sawfish	м	-	Unlikely - Narrow Sawfish are found predominantly in deeper offshore waters, at depths greater than 40 m, and are unlikely to be present at the Project area. There have been no recorded sightings of Narrow Sawfish in the Project area. No BIAs have been identified for Narrow Sawfish around the Project area.	
Rhincodon typus	Whale Shark	V, M	-	Possible - One reported sighting within 10 km of the Projects' marine elements, past the 10 m depth contour. Whale Sharks are infrequently sighted throughout the NT and QLD. The Project does not overlap with the species BIA and is not a recognised aggregation for Whale Sharks. Therefore, the species may infrequently be sighted travelling near the Project area.	
Sphyrna lewini	Scalloped Hammerhead	CE	-	Possible - There has been infrequent sightings on the Scalloped Hammerhead Shark within the Project search area, however recent work completed by the Marine Biodiversity Hub on Scalloped Hammerhead Sharks identified the species presences around the Project area. The species therefore may from time to time travel through the Project area as they are travelling to adjacent deeper waters for feeding.	

⁵⁶ Conservation status under either the Environment Protection and Biodiversity Conservation Act 1999 ('EPBC') or Territory Parks and Wildlife Conservation Act ('NT'): CE = Critically Endangered, E = Endangered, V = Vulnerable, M = Migratory, Ma = Marine, Cet = Cetacean, CD = Conservation Dependent, '-' = not listed

Scientific	Common	Status	5 ⁵⁶	Assessment of Likelihood of Occurrence
Name	Name	EPB C	NT	
Mobula alfredi	Reef Manta Ray	М	-	Possible - While there have been no recorded sightings close to the Project's marine elements, the classification is based on the migratory behaviours of Reef Manta Ray and records close to Groote Eylandt. A recent study of their distribution in Australia identified that the species occurs along the coastline of the NT.
Mobula birostris	Giant Manta Ray	М	-	Unlikely - Giant Manta Rays have not been sighted close to Winchelsea Island or Groote Eylandt and sightings usually occur in deeper offshore waters.

10.2.4 Nationally Threatened Species – Significant Impact Assessments

Field assessments of the Project area and its surrounds were undertaken on multiple occasions between 2018 and 2022 to identify the presence of conservation significant flora on Winchelsea Island. The surveys recorded 276 plant species, however none of which are listed as conservation significant under the EPBC Act. Based on the field surveys there are three listed threatened terrestrial species considered relevant to the Project (Appendix F):

- Northern Masked Owl Tyto novaehollandiae Kimberli (Vulnerable);
- Northern Quoll Dasyurus hallucatus (Endangered); and
- Ghost Bat Macroderma gigas (Vulnerable).

For the marine species, a conservation significant marine species assessment was completed for the Project (Appendix DD). Considering those species assessed as having the greatest potential risk from the Project and their significance and likelihood of occurrence, ten listed marine species were considered relevant to the Project and warranting further assessment of potential impact:

- Australian Subfin Dolphin Ocraella heinsohni (Migratory);
- Australian Humpback Dolphin Sousa sahulensis (Migratory);
- Indo-Pacific Bottlenose Dolphin Sousa chinensis (Migratory);
- Dugong Dugong dugon (Migratory);
- False Killer Whale Pseudorca crassidens (Cetacean);
- Flatback Turtle Natator depressus (Vulnerable and Migratory);
- Green Turtle Chelonia mydas (Vulnerable and Migratory);
- Hawksbill Turtle Eretmochelys imbricata (Vulnerable and Migratory);
- Saltwater Crocodile Crocodylus porosus (Migratory); and
- Green Sawfish Pristis zijsron (Vulnerable and Migratory).

The following sections provide an assessment against significant impacts guidelines⁵⁷ for each species listed above. The assessment has been completed in accordance with the significant impact guidelines 1.1 (DoE, 2013)

⁵⁷ Department of the Environment (DotE) (2013). Matters of National Environmental Significance, significant impact guidelines 1.1 *Environment Protection and Biodiversity Conservation Act 1999*. Australian Government.

WINCHELSEA MINING

Table 10.2-4 Significant Impact Assessment -Key Terrestrial Mammals

Criterion	Northern Masked Owl - Tyto novaehollandiae Kimberli (Vulnerable)	Northern Quoll - Dasyurus hallucatus (Endangered)	Ghost Bat - <i>Macroderma gigas</i> (Vulnerable)
Lead to a long- term decrease in the size of a population	Possible. The Project will require clearing of between 50% to 100% of one Northern Masked Owl (pair) foraging/range territory. The proposed clearance area is estimated at approximately 11% of the Winchelsea Island land area. The Northern Masked Owl population on Winchelsea could include 4 (pair) territories. The Project could reduce the carrying capacity of the island by disrupting foraging habitat for 1 pair. In that scenario, the Project may cause the loss of one pair of masked owls from Winchelsea Island. The clearance area is centred on habitats that are preferred and occupied by Northern Masked Owls (open woodland and forest). However, Project impacts will be reduced if roost/nest sites can be identified and managed with associated management measures included in the EIS and management plans. There is a risk that altered fire regimes could impact prey density and reduce the availability of roost and nest sites for Northern Masked Owls. In the regional context, Barden et al., (2023) estimated 730 mature Northern Masked Owls on Groote Eylandt with the potential loss of one pair constituting 0.27% of the Groote Eylandt populations on other Groote Archipelago islands.	Possible. The clearance required for the Project will result in the reduction of the local carrying capacity by an estimated 174 Northern Quoll range areas, or 11% of the Winchelsea Island land area. The Northern Quoll are also widespread on Groote Eylandt. The Project may further result in a 10-14% decline of the Northern Quoll population on Winchelsea Island without considering other factors (e.g., roadkill). However, it is noted the Project will be developed over 11 years and progressive rehabilitation of the cleared area will occur during this period. Therefore, the rehabilitated area may provide suitable for aging habitat and the extent of habitat unavailable for use at any one time is likely to be much less than 530 ha. An introduction of cane toads (if any) would pose a significant threat to the entire Winchelsea Island Northern Quoll population. Similarly, any introduction of feral cats to Winchelsea Island will pose risk to the local quolls due to lack of experience with feral meso-predators. There is a risk of increased roadkill due to traffic movements, particularly during night-time or low light conditions. In acknowledgement of these risks the Project has established a dedicated Biodiversity Management Plan with quarantine measures to prevent introduction of invasive species. Changes in fire regimes would impact availability of cover and den sites in woodland and forest habitats, as well as altering prey density. Fire regime management commitments are included in the EIS and the regimes will	Unlikely. Roost habitats are not present in the Project area and these habitats are not proposed to be disturbed by the Project. The Project may potentially lead to a decline in available foraging areas for Ghost Bats; however, bats are likely to disperse to nearby areas for foraging. Furthermore, observations on Groote Eylandt indicate that Ghost Bats continue to forage around lights in urban areas and other infrastructure. The Project is therefore unlikely to lead to a long term decrease in the Ghost Bat population. There is a risk that altered fire regimes could impact prey density for Ghost Bats. Fire regime management commitments are included in the EIS and the regimes will be developed and managed in accordance with the ALC Rangers.

Criterion	Northern Masked Owl - <i>Tyto novaehollandiae</i> Kimberli (Vulnerable)	Northern Quoll - Dasyurus hallucatus (Endangered)	Ghost Bat - <i>Macroderma gigas</i> (Vulnerable)
		be developed and managed in accordance with the ALC Rangers.	
Reduce the area of occupancy of the species	Possible . The Project will require clearing of between 50% and 100% of one Northern Masked Owl (pair) foraging territory, although territory size in the Groote Archipelago is unknown. The loss of 530 ha of preferred habitat could potentially reduce the area of occupancy by one unit area (4 km ²) if Northern Masked Owls are completely alienated from this area. It is noted the Project will be developed over 11 years and progressive rehabilitation of the cleared area will occur during this period. Therefore, while the rehabilitated area will not contain suitable nesting qualities for many years it may provide suitable for use at any one time is likely to be much less than 530 ha. Based on rehabilitation typically takes between 10 to 15 years, and post 15 years the primary tree species diversity and standing tree basal area fall into the upper range of successful rehabilitation (GEMCO, 2015). It is also noted that studies of tree hollows in eucalypt forests in tropical northern Australia shows that hollow formation in the eucalypt forests typically comprise smaller trees (and total basal area), but hollow formation occurs in trees of smaller size. Despite their less substantial forest structure, the total density of hollow trees, and hollows, is greater in tropical eucalypt forests than is typical of forests in temperate Australia (Woinarski & Westaway, 2008). The refore, while there may be limited emergence of	Possible . The Project has the potential to reduce the local Northern Quoll population by an estimated 174 range areas. The loss of 530 ha of species preferred habitat may reduce the area of occupancy (AOO) by one unit area (4 km ²) if Northern Quolls are alienated from this area. The majority of the remaining 89% of Winchelsea Island excluded from the disturbance envelope is likely to remain as habitat for the species. Furthermore, it is noted the Project will be developed over 11 years and progressive rehabilitation of the cleared area will occur during this period. Therefore, the rehabilitated areas may provide suitable habitat and the extent of habitat unavailable for use at any one time is likely to be much less than 530 ha. Based on observations on Groote Eylandt, it is expected that Northern Quolls will continue to move into and around Project areas and re-occupy rehabilitated areas.	Unlikely. The Project will remove limited amount of foraging habitat for Ghost Bats (530 hectares). Based on current understanding of the distribution of Ghost bat habitats and roost sites, the AOO will not be reduced by the Project.

Criterion	Northern Masked Owl - <i>Tyto novaehollandiae</i> Kimberli (Vulnerable)	Northern Quoll - Dasyurus hallucatus (Endangered)	Ghost Bat - Macroderma gigas (Vulnerable)
	hollows by the 15-year completion period, Woinarski & Westaway (2008) indicate this may be up to 30 years post- disturbance.		
Fragment an existing population into two or more populations	Unlikely. The Project requires the clearance of separate components of the existing Northern Masked Owl range area, including several mining blocks in the south and north of the Project area. These areas will be surrounded by intact vegetation. The Winchelsea Island Northern Masked Owls are unlikely to be genetically isolated from the Groote Eylandt population. The Project is unlikely to alter the ability of Northern Masked Owls to disperse between Winchelsea Island and Groote Eylandt.	Unlikely . The Project requires the clearance of separate components of the existing Northern Quoll range area, including several mining blocks in the south and north of the Project area. These areas will be surrounded by intact vegetation. Remnant quoll populations are unlikely to become genetically isolated. Based on observations on Groote Eylandt, it is expected that Northern Quolls will continue to move into and around Project areas.	Unlikely . The Project requires development of separate component areas across a large study area. The design will not fragment local Ghost Bat populations.
Adversely affect habitat critical to the survival of a species	Unlikely. It is expected that the local Northern Masked Owl pair will continue to forage and nest in the local area as the Project progresses if critical nest/roost sites are maintained. Further, the potential loss of one pair of Northern Masked Owl does not pose a significant genetic risk to the Groote Eylandt masked owl population.	Unlikely. Critical habitat for Northern Quolls has not been identified within the Project clearance footprint. Northern Quoll will continue to forage in the local area as the Project progresses. The Winchelsea Island Northern Quolls are already genetically isolated from the Groote Eylandt population. The loss of approximately 11% of the habitat area for Northern Quolls on Winchelsea Island is unlikely to result in the loss of the population on the island, particularly if quarantine is maintained.	Unlikely . There are no identified critical habitats for Ghost Bats within the Project area footprint. The current Project does not pose a risk to the long-term survival and genetic diversity of the local Ghost bat population.
Disrupt the breeding cycle of a population	Unlikely . Nesting locations have not been identified within the Project area. Further research would be necessary to ensure that the breeding cycle of the Winchelsea Island Northern Masked Owls is not disrupted by the Project. However, any disruption is likely to a single pair, not a population.	Unlikely . It is unlikely that the Project will significantly disrupt local Northern Quoll breeding cycles.	Unlikely . Ghost Bat maternity sites have not been detected within the Project area.

Criterion	Northern Masked Owl - <i>Tyto novaehollandiae</i> Kimberli (Vulnerable)	Northern Quoll - <i>Dasyurus hallucatus</i> (Endangered)	Ghost Bat - <i>Macroderma gigas</i> (Vulnerable)
Modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline	Possible . The Project will result in the clearing of approximately 50-100% % of one Northern Masked Owl foraging/range territory. This may result in a small decline in the Northern Masked Owl populations on Winchelsea Island (reduced area of habitat on the island equivalent to the loss of 11% of the land area of the island). This may potentially reduce the carrying capacity of Winchelsea Island by one pair. The Project will be developed over 11 years and progressive rehabilitation of the cleared area will occur during this period. As such, this habitat loss would be mitigated as areas are rehabilitated following mining. The potential loss of one pair constitutes 0.27% of the Groote Eylandt population. This excludes the potential Northern Masked Owl populations on other Groote Archipelago islands.	Possible. The Project requires the clearance of separate components of up to 530 ha (~174 Northern Quoll range areas). The Project will result in a decline in the local Northern Quoll population commensurate with the area cleared (10-14% of the island population). However, it is noted the Project will be developed over 11 years and progressive rehabilitation of the cleared area will occur during this period. Therefore, the rehabilitated areas may provide suitable habitat and the extent of habitat unavailable for use at any one time is likely to be much less than 530 ha. Based on observations on Groote Eylandt, it is expected that Northern Quolls will continue to move into and around Project areas and re-occupy rehabilitated areas.	Unlikely . The Project will require clearing of approximately 530 ha of potential Ghost Bat foraging habitat. This is unlikely to cause a decline of the local Ghost Bat population.
Result in invasive species that are harmful to a critically endangered or endangered species becoming established in the endangered or critically endangered species' habitat	Unlikely. There are currently no known threats regarding invasive species to the Northern Masked Owl in the Project area. Feral cats may occasionally predate Northern Masked Owls whilst they are feeding on the ground, although the species appears to be absent from Winchelsea Island. Invasive weeds such as Gamba Grass can impact Northern Masked Owl nesting trees and roost sites if fire regimes are significantly altered. The Project has a dedicated Biosecurity Management Plan with quarantine measures to prevent introduction of invasive species.	Unlikely. The Project has a dedicated Biosecurity Management Plan with quarantine measures to prevent introduction of invasive species. This plan covers Cane Toads, a major risk factor for Northern Quolls in the Groote Archipelago. The potential introduction of grass species that promote hot fires could increase risks to Northern Quoll populations from altered fire regimes. Fire regime management commitments are included in the EIS and the regimes will be developed and managed in consultation with the ALC Rangers.	Unlikely. There are currently no invasive species that pose a significant threat to Ghost Bats in the Project area. The Project has a dedicated Biosecurity Management Plan with quarantine measures to prevent introduction of invasive species. The potential introduction of grass species that promote hot fires could increase risks to Ghost Bat populations from altered fire regimes, potentially impacting foraging areas and prey availability. Fire regime management commitments are included in the EIS and the regimes will be developed and managed in accordance with the ALC Rangers
Introduce disease that may cause the	Unlikely . The Project is unlikely to introduce disease that might cause the species to decline. The quarantine	Unlikely . The Project is unlikely to introduce disease that might cause the species to decline. The quarantine	Unlikely . The Project is unlikely to introduce disease that might cause the species to decline. The quarantine

WINCHELSEA MINING

Criterion	Northern Masked Owl - <i>Tyto novaehollandiae</i> Kimberli (Vulnerable)	Northern Quoll - Dasyurus hallucatus (Endangered)	Ghost Bat - Macroderma gigas (Vulnerable)
species to decline	protocols for the Project are designed to minimise associated risks.	protocols for the Project are designed to minimise associated risks.	protocols for the Project are designed to minimise associated risks.
Interfere with the recovery of the species	Unlikely . The Project will occur within the range areas of 1 or 2 Northern Masked Owl pairs. The surrounding area is within the Anindilyakwa Indigenous Protected Area, which is managed for the protection of biological resources and threatened species.	Unlikely . There are no overarching threats for Northern Quolls on Groote Eylandt other than the risk of introduction of Cane Toads to the islands and fire management.	Unlikely . The Project does not require disturbance at Ghost Bat roost sites. The surrounding area is within the Anindilyakwa IPA, which is managed for the protection of threatened species. The low number of bats detected on Winchelsea Island suggests that the Project will not interfere with the recovery of the species.

Table 10.2-5 Significant Impact Assessment - Marine Mammals

Criterion	Australian Humpback Dolphin - Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale - Pseudorca crassidens (Cetacean)
Lead to a long- term decrease in the size of a population	Unlikely. The Australian Humpback Dolphin has been recorded within offshore transhipment portion of the Project area and within Winchelsea Passage, separating Winchelsea Island and Groote Eylandt. Therefore, they are considered to have a high likelihood of occurrence. There are currently no known BIAs occurring within the Gulf of Carpentaria. However, Bartalumba Bay exhibits suitable habitat for the species. While the marine portions of the Project area (198 ha) could constitute habitat for Australian Humpback	Unlikely. The Australian Snubfin Dolphin has been recorded in the western part of Bartalumba Bay and has a high likelihood to occur within or within close proximity of Project area. Bartalumba Bay exhibits suitable habitat for the species. While the marine portions of the Project area (198 ha) could constitute habitat for Australian Snubfin Dolphins, it is likely species will be present within the Project marine elements from time to time but are not restricted to this area. Snubfin Dolphins are a mobile species not restricted to the Project area and will likely be	Unlikely. Indo-Pacific Bottlenose Dolphin have been recorded close to the Project area and have a high likelihood to occur in the waters surrounding Winchelsea Island. Due to local estimations, species is considered to be common in Australian waters, however total population estimations do not exist. Indo- Pacific Bottlenose Dolphins tend to occupy shallower waters up to 50 m deep (Palmer et al., 2014). While the marine portions of the Project area (198 ha) could constitute habitat for the species, it is likely that Indo-pacific Bottlenose Dolphin will be	Unlikely. The largest populations of Dugong found in the NT is in the Southern Gulf of Carpentaria, which is inclusive of Bartalumba Bay. The estimated population size of Dugong in the Gulf of Carpentaria is between 3,390 to 4,586. Dugongs have been recorded within 10 km of the Project area, mostly to the northeast and southeast of Winchelsea Island with several recordings in Milner Bay near Alyangula and one within close proximity of the proposed wharf and BLF. Suitable habitat is present with limited seagrass beds to the south of the wharf.	Unlikely. The False Killer Whale is highly likely to occur within the proximity of the Project and have been sighted multiple times within the Project 10 km search area. However, the species is not restricted to the area surrounding Winchelsea Island. The species is highly mobile. While the marine portions of the Project area (198 ha) could constitute habitat for the species, it is likely that False Killer Whale will be present within the Project marine elements from time to time but are not restricted to this area. Furthermore, with the exception of the minor physical

Criterion	Australian Humpback Dolphin - Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale – Pseudorca crassidens (Cetacean)
	Dolphins, it is likely that Australian Humpback Dolphins will be present within the Project marine elements from time to time but are not restricted to this area. Furthermore, with the exception of the minor physical wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population.	present transiting and foraging through the Project marine elements. Furthermore, with the exception of the minor physical wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population.	present within the Project marine elements from time to time but are not restricted to this area. Furthermore, with the exception of the minor physical wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population.	Dugongs area likely to be present, but not restricted to the Project area. Benthic video footage identified three species of seagrass, those being <i>Cymodocea serrulata, Enhalus</i> <i>acoroides</i> and <i>Halophila ovalis</i> . The cumulative benthic loss assessment identified benthic communities in Bartalumba Bay with seagrass totalling 436.74 ha and a predicted irreversible loss to these areas of 5.22 ha (1.2%) from the Project. Such an impact is unlikely to result in the long- term decrease of the Dugong population surrounding Groote Eylandt. In consideration of the observed density of seagrass, and anticipated impact area of the proposed wharf and BLF, the resultant loss of seagrass meadow would have little measurable impact to the greater seagrass community surrounding Winchelsea Island and the Groote Archipelago.	wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population.

WINCHELSEA MINING

Criterion	Australian Humpback Dolphin – Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale - Pseudorca crassidens (Cetacean)
Reduce the area of occupancy of the species	Unlikely. There is a high likelihood that Australian Humpback Dolphins will be present within the Project area from time to time, however the species is not restricted to this area. The species is predicted to continue to utilise Bartalumba Bay during Project operation. This is support by multiple records of the species occurring around the active GEMCO port at Milner Bay.	Unlikely. The species is not restricted to this area. While little is known on the migratory patterns and seasonal movements of this species throughout the NT, it is not restricted to Bartalumba Bay. The species may continue to utilise Bartalumba Bay during Project operation and the activities is unlikely to reduce the area of occupancy for the species.	Unlikely. In Australia the Indo- Pacific Bottlenose Dolphin mostly occupies shallow inshore regions with typically less than 50 m depth. This makes them more profound to be negatively affected by anthropogenic actions. However, they have widespread occurrence in coastal areas around oceanic islands, and they tend to forage across a wider range of habitats. Furthermore, Indo-Pacific Bottlenose Dolphins are considered to prefer deeper waters close to sloping bathymetry (Hanf et al., 2017; Hanf et al., 2022). Finer scale studies support this, with significant differences in habitat use and fine-scale habitat selection (e.g., Hunt et al., 2017). While the species may continue to utilise Bartalumba Bay during Project operation and the activities is unlikely to reduce the area of occupancy for the species.	Unlikely. The cumulative benthic loss assessment identified benthic communities in Bartalumba Bay with seagrass totalling 436.74 ha and a predicted irreversible loss to these areas of 5.22 ha (1.2%) from the Project. As such, Bartalumba Bay will retain suitable habitat for Dugong and the Project is unlikely to reduce the area of occupancy. Marine vessel strikes remain a risk; however, marine mammal risk reduction protocols and procedures have been included in the EIS and associated Dredge Management Plan. As per existing observations, Dugong still utilise the area in and around the GEMCO port at Milner Bay and ongoing occupancy of the area surrounding the marine infrastructure at Winchelsea Island is also predicted.	Unlikely. There is a high likelihood species will be present within the Project area from time to time, however the species is not restricted to this area. The species is predicted to continue to utilise Bartalumba Bay during Project operation. This is support by records of the species occurring around the active GEMCO port at Milner Bay.
Fragment an existing population into	Unlikely. There is little genetic flow between different population of Australian	Unlikely. Australian Snubfin Dolphin are a mobile species and are not restricted to this area. The	Unlikely – Knowledge of the seasonal movements, migrations and breeding seasonality of these	Unlikely. Within the broader area of Bartalumba Bay and Groote Eylandt, only a small percentage	Unlikely. Research suggest that the species population could be demographically isolated in the

Criterion	Australian Humpback Dolphin – Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale - Pseudorca crassidens (Cetacean)
two or more populations	Humpback Dolphins, which makes the species more vulnerable to disturbances through coastal modifications like dredging, construction and increased shipping (Brown et al., 2017). However, the area has no known aggregation points for Australian Humpback Dolphins. Bartalumba Bay is likely to infrequently utilised by a subpopulation and disturbance within the bay would not fragment the existing subpopulation.	species is vulnerable to disturbances through coastal modifications like dredging, construction and increased shipping (Brown et al., 2017). Blue Mud Bay and Limmen Bight which are 50 km north and 150 km south from Winchelsea Island respectively, are consistent hotspots for Australian Snubfin Dolphins. In the NT, most records of Australian Snubfin Dolphins are from estuaries, tidal rivers and coastal areas within 20 km of river mouths. In the Gulf of Carpentaria, Australian Snubfin Dolphins occur up to 20 km offshore. Bartalumba Bay is likely to be infrequently utilised by a subpopulation and disturbance within the bay would not fragment the existing subpopulation.	inshore dolphin species is lacking for the North Marine Region, however a study in the Darwin region found that Bottlenose Dolphins (<i>Tursiops sp.</i>) appeared to move freely among Shoal Bay, Darwin Harbour and Bynoe Harbour, an area of over 1,000 km ² , with as many as 40 identified individuals being sighted in different sites at different times (Brooks et al., 2017). Bartalumba Bay is likely to be infrequently utilised by the species and disturbance within the bay would not fragment the existing population.	of seagrass exists within the Project disturbance envelope and the modelled Zone of High Impact (ZoHI) for dredging (area of irreversible loss). Within Bartalumba Bay this extent is 1.2%, while estimates from the CSIRO (2015) and the Institute for Marine and Antarctic Studies (IMAS) (2005) place the lower and upper extents of seagrass occurrence surrounding Groote Eylandt at 27,000 ha and 56,500 ha respectively. In a regional context, the Project equates to a predicted loss of between 0.019% and 0.009% of seagrass habitat. The disturbance area is also at the northern extent of seagrass distribution on the western coast of Winchelsea Island. The limited extent of the physical wharf component and continued occupancy of Dugong at the Milner Bay Port, indicate the Project is highly unlikely to fragment an existing population.	NT. However, Bartalumba Bay is likely to infrequently utilised and the limited proposed disturbance within the bay would not fragment the existing subpopulation, although it may temporarily discourage use in the eastern portion of the bay during certain activities related to construction and dredging.
Adversely affect habitat critical to the survival of a species	Unlikely. No known BIA exists within Project area, nor within the Southern Gulf of Carpentaria. While Bartalumba Bay may be	Unlikely. While Bartalumba Bay may be infrequently utilised by Australian Snubfin Ddolphins it does not constitute habitat that is	Unlikely . While Bartalumba Bay may be infrequently utilised by Indo-pacific Bottlenose Dolphins it does not constitute habitat that	Unlikely. The proportion of seagrass impacted by the Project is minor considering local and regional occurrence and is not	Unlikely. False Killer Whales prefer deep, offshore waters and sometimes deep coastal waters (Culik, 2005), with studies in the

WINCHELSEA MINING

Criterion	Australian Humpback Dolphin - Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale - Pseudorca crassidens (Cetacean)
	suitable for the species foraging, the area is unlikely to contain habitat critical to the survival of the species, particularly given the species transient and wide- ranging movement patterns.	critical to the survival of the species. In the NT, most records of Australian Snubfin Dolphins are from estuaries, tidal rivers and coastal areas within 20 km of river mouths. Furthermore, the Project's irreversible impact on productive habitat constitutes only 0.2% of the habitat in Bartalumba Bay and a fraction of this amount when considering the regional habitat in the Groote Archipelago (O2 Marine, 2022).	is critical to the survival of the species, nor will the habitat within Bartalumba Bay be significantly impacted to the extend it is unsuitable to the species.	likely to be habitat critical to the survival of the species.	NT showing the species regularly spending time in both pelagic and coastal environment (Palmer et al., 2017). While there have been multiple records surrounding Winchelsea Island this is not considered habitat critical to the survival of the species.
Disrupt the breeding cycle of a population	Unlikely. There is a lack of knowledge regarding Australian Humpback Dolphins breeding seasonality. Nevertheless, the portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago and therefore disruption to the breeding cycle is highly unlikely.	Unlikely. There is a lack of knowledge of seasonal breeding patterns in the NT. Calves around Cleveland Bay QLD are seen all year round, indicating that the Australian Snubfin Dolphin may not have particular breeding periods (Parra, 2006). The portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago and therefore disruption to the breeding cycle is highly unlikely.	Unlikely. Calving peaks occur in spring and summer or spring and autumn. The portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago and therefore disruption to the breeding cycle is highly unlikely.	Unlikely. The loss of seagrass habitat is considered so minor, dredging short-lived and physical disturbance limited that disruption to the breeding cycle is unlikely, particularly considering the mobile nature of the species.	Unlikely. There are no know seasonal pattern and calving areas in Australian waters (Baker, 1990; Bannister et al., 1996; Purves & Pilleri 1978; Stacey et al., 1991). The portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago and therefore disruption to the breeding cycle is highly unlikely.
Modify, destroy, remove, isolate or decrease the availability or	Unlikely. Direct and indirect disturbance from marine activities has been assessed to result in 141.75 ha (cumulative	Unlikely. Direct and indirect disturbance from marine activities has been assessed to result in 141.75 ha (cumulative	Unlikely. Indo-Pacific Bottlenose Dolphins can be negatively impacted by habitat destruction and degradation (Ross, 2006),	Unlikely. Dugongs can be negatively affected by habitat degradation including coastal development and port expansion.	Unlikely. Residue of mercury and hydrocarbon including DDE have been detected in tissues of False Killer Whales (Stacey & Baird

WINCHELSEA MINING

Criterion	Australian Humpback Dolphin – Sousa sahulensis (Migratory)	Australian Snubfin Dolphin - Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale - Pseudorca crassidens (Cetacean)
quality of habitat to the extent that the species is likely to decline	loss), with 15.82 ha classified as moderate to high sensitivity/productivity marine habitat (e.g., seagrasses and corals) and the remaining 125.93 ha consisting of low sensitivity/productivity bare substrates consisting of bioturbated silt and sand/shell hash. The loss of 15.82 ha of high productive habitat constitutes only 0.2% of the habitat in Bartalumba Bay and a fraction of this amount when considering the regional habitat in the Groote Archipelago (O2 Marine, 2022). As such, it is highly unlikely the Project would result in any adverse impact to the species, let alone a species decline.	loss), with 15.82 ha classified as moderate to high sensitivity/productivity marine habitat (e.g., seagrasses and corals) and the remaining 125.93 ha consisting of low sensitivity/productivity bare substrates consisting of bioturbated silt and sand/shell hash. The loss of 15.82 ha of high productive habitat constitutes only 0.2% of the habitat in Bartalumba Bay and a fraction of this amount when considering the regional habitat in the Groote Archipelago (O2 Marine, 2022). As such, it is highly unlikely the Project would result in any adverse impact to the species, let alone a species decline.	water pollution and noise disturbance (Braulik et al., 2019). Repeated and cumulative stressors have the potential to disrupt and displace individuals (Bejder et al., 2006; Smith et al., 2016). A range of control and management measures associated with these aspects are included in the Project commitments to limit the potential for impacts to species such as the Indo-pacific Bottlenose Dolphin, should it be present in the area during construction and operation. Direct and indirect disturbance from marine activities has been assessed to result in 141.75 ha (cumulative loss), with 15.82 ha classified as moderate to high sensitivity/productivity marine habitat (e.g., seagrasses and corals) and the remaining 125.93 ha consisting of low sensitivity/productivity bare substrates consisting of bioturbated silt and sand/shell hash. The loss of 15.82 ha of high productive habitat constitutes only 0.2% of the habitat in Bartalumba Bay and a fraction of	This usually leads to direct seagrass loss which leads to reduced food resources which then potentially causes delayed reproduction or starvation. Furthermore, pollution, vessel strike and noise can also have negative effects on the species. Those stressors can cause disturbances, stress, or disrupt behaviour (Marsh <i>et al.</i> , 2008). Within Bartalumba Bay this extent of lost habitat is predicted to be 1.2%, while estimates from the CSIRO (2015) and IMAS (2005) indicate an upper and lower extent of potential loss in the regional setting of between 0.019% and 0.009%. The disturbance area is also at the northern extent of seagrass distribution on the western coast of Winchelsea Island. The limited extent of the physical wharf component and continued occupancy of dugongs at the Milner Bay Port, indicate the species is unlikely to decline as a sole result of the Project.	1991). Exposure to pollution such as plastic debris, oil spills and dumping of industrial wastes into waterways and the sea could lead to bio-accumulation of toxic substances in body tissues, which moreover could lead to immunosuppression and increased mortalities of species (Bannister et al., 1996). Given the proposed Project operations, limited use of chemicals (e.g., no chemicals used for processing) and management commitments the Project is unlikely to produce impacts that that would result in species decline. The portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago.

WINCHELSEA MINING

Criterion	Australian Humpback Dolphin - Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale – Pseudorca crassidens (Cetacean)
			this amount when considering the regional habitat in the Groote Archipelago (O2 Marine, 2022). As such, it is highly unlikely the Project would result in any adverse impact to the species, let alone a species decline.		
Result in invasive species that are harmful to a critically endangered or endangered species becoming established in the endangered or critically endangered species' habitat	Unlikely. The species is listed as Migratory only. There are no known marine invasive species that directly affect the species. Nevertheless, management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing marine invasive species to the waters surrounding Winchelsea Island.	Unlikely. The species is listed as Migratory only. There are no known marine invasive species that directly affect the species. Nevertheless, management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing marine invasive species to the waters surrounding Winchelsea Island.	Unlikely. The species is listed as Migratory only. There are no known marine invasive species that directly affect the species. Nevertheless, management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing marine invasive species to the waters surrounding Winchelsea Island.	Unlikely. Invasive species are not identified as a key threat to Dugongs. There are no known marine invasive species that directly affect the species. Nevertheless, management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing marine invasive species to the waters surrounding Winchelsea Island.	Unlikely. Management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing invasive species to Winchelsea Island.
Introduce disease that may cause the species to decline	Unlikely. Introduction of disease is not identified as a specific risk for the species. The Project is unlikely to introduce diseases that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.	Unlikely. Introduction of pathogens is identified as a risk to the species (namely, <i>Toxoplasmosis gondii</i>). The Project is unlikely to introduce diseases that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.	Unlikely. Introduction of disease is not identified as a specific risk for the species. The Project is unlikely to introduce diseases that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.	Unlikely. Introduction of disease is not identified as a specific risk for the species. The Project is unlikely to introduce diseases that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.	Unlikely. Edwardsiella tarda can cause sepsis which further can lead to death in captive marine mammals. However, the evidence of negative effects of E. tarda in wild marine mammals remains poorly understood due to the limitations of postmortem analyses (Dunn et al., 2001)

WINCHELSEA MINING

Criterion	Australian Humpback Dolphin – Sousa sahulensis (Migratory)	Australian Snubfin Dolphin – Oracaella heinsohni (Migratory)	Indo-Pacific Bottlenose Dolphin – <i>Tursiops aduncus</i> (Migratory)	Dugong – <i>Dugong dugon</i> (Migratory)	False Killer Whale - Pseudorca crassidens (Cetacean)
					The Project is unlikely to introduce disease that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.
Interfere with the recovery of the species	Unlikely. The Project area is not within a BIA for the species. The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.	Unlikely. The Project area is not within a BIA for the species. The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.	Unlikely. The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.	Unlikely. The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.	Unlikely. Reproduction of the False Killer Whale are barely studied, but females are estimated to calve every 7 years (Palmer et al., 2009). Therefore species recovery is most likely a slow process. The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.

Table 10.2-6 Significant Impact Assessment – Marine Reptiles and Fish

Criterion	Flatback Turtle - Natator depressus (Vulnerable and Migratory)	Green Turtle - <i>Chelonia mudas</i> (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - Crocodylus porosus (Migratory)	Green Sawfish - <i>Pristis zijsron</i> (Vulnerable and Migratory)
Lead to a long- term decrease in the size of a population	Unlikely . Flatback Turtles are the most widely spread nesting marine turtle species in the NT, nesting on a wide variety of beach types around the entire coastline. Flatback Turtles surrounding Winchelsea Island are a part of the Arafura Sea	Unlikely. The Green Turtle is found in tropical and subtropical waters globally, including Australia; and is one of Australia's most common marine turtles. Within the southern Great Barrier Reef, population numbers are estimated at 8,000 for the	Unlikely. The Hawksbill Turtle within the Winchelsea Island region is part of the north-east Arnhem Land genetic stock, a stock with approximately 200 to 600 nesting females recorded from 2009 – 2010, however there has been no long-term	Unlikely. Saltwater Crocodile have been sighted within the 10 km search area from Winchelsea Island, including a record to the east in North West Bay and a record to the west of	Unlikely. While there have been no recorded observations of Green sawfish in the Project area, or within the 10 km search area, there is a high likelihood of the species occurring within proximity of Project areas.

WINCHELSEA MINING

Criterion	Flatback Turtle – <i>Natator</i> <i>depressus</i> (Vulnerable and Migratory)	Green Turtle - <i>Chelonia muda</i> s (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - <i>Crocodylus porosus</i> (Migratory)	Green Sawfish – Pristis zijsron (Vulnerable and Migratory)
	 genetic stock, which is considered the largest genetic stock within Australia. The Flatback Turtles is one of only two marine turtles without a global distribution, occurring only in the tropical waters of northern Australia, Papua New Guinea and Irian Jaya. During marine turtle surveys, Flatback Turtle nests were observed on the western beaches of Winchelsea Island, with the nearest being located approximately 4 km north of the wharf. However, very few older nests were identified in this area and the key nesting areas were determined to be on the north of the Island. The Project will not directly disturb any nesting areas, lighting would not be directly visible at the key northern nesting beaches and various management measures to prevent impacts to the species have been included in the EIS. Bartalumba Bay exhibits suitable foraging habitat for the species. While the marine portions of the Project area (198 ha) could 	species. Within the NT, the Green Turtle occurs in numerous conservation reserves including Casuarina Coastal Reserve, Garig Gunak Barlu National Park and Nanydjaka Indigenous Protected Area. The Green Turtles within the Winchelsea Island region are part of the Gulf of Carpentaria genetic stock. All Green Turtle nests on Winchelsea Island were identified on the northern beaches. The Project will not direct disturb any nesting areas, lighting would not be directly visible at the key northern nesting beaches and various management measures to prevent impacts to the species have been included in the EIS. Adult Green Turtles eat mainly seagrass and algae. The cumulative benthic loss assessment identified benthic communities in Bartalumba Bay with seagrass totalling 436.74 ha and a predicted irreversible loss to these areas of 5.22 ha (1.2%) from the Project. Such an impact is unlikely to result in the long- term decrease of the size of the	monitoring for this stock and its status is currently unknown. Hawksbill Turtles are found in tropical, subtropical and temperate waters globally and have been recorded in all the oceans of the world. All Hawksbill Turtle nests on Winchelsea Island were identified on the northern beaches. The Project will not direct disturb any nesting areas, lighting would not be directly visible at the key northern nesting beaches and various management measures to prevent impacts to the species have been included in the EIS. In Australia and elsewhere, Hawksbill Turtle are omnivorous, eating a variety of animals and plants including sponges, hydroids, cephalopods (octopus and squid), gastropods (marine snails), cnidarians (jellyfish), seagrass and algae (Carr & Stancyk, 1975; Whiting, 2000). Bartalumba Bay exhibits suitable foraging habitat for the species. While the marine portions of the Project area (198 ha) could constitute habitat,	Bartalumba Bay in Connexion Passage. Saltwater Crocodiles have a high likelihood of occurrence in the Project area. The species population size is estimated to be between 100,000–200,000 individuals in Australia and in the NT its population size is around 70,000–75,000 individuals. Bartalumba Bay exhibits suitable habitat for the species. While the marine portions of the Project area (198 ha) could constitute habitat, it is likely that Saltwater Crocodile will be present within the Project marine elements from time to time but are not restricted to this area as they are highly mobile. Furthermore, with the exception of the minor physical wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population. Furthermore, the species population size has an overall increasing trend in Australia and therefore it is highly unlikely that	The Green Sawfish inhabits muddy bottom habitats and enters estuaries. It has been recorded in inshore marine waters, estuaries, river mouths, embankments and along sandy and muddy beaches. Bartalumba Bay exhibits suitable habitat for the species. While the marine portions of the Project area (198 ha) could constitute habitat, it is likely that Green Sawfish will be present within the Project marine elements from time to time but are not restricted to this area as they are highly mobile. The modelled temporary outer extents of the Zone if Moderate Impact (ZoMI) and ZoHI from the dredge plume is 138.2 ha. The spatially localised plumes are predicted to be short-lived (roughly three weeks) with irreversible impacts to marine benthic communities (ZoHI) limited to 22.8 ha with the majority being low productivity bare substrate environments, with only 5.22 ha containing seagrasses of varying densities. The potential extent of impacts to the habitat is unlikely to lead to

WINCHELSEA MINING

Criterion	Flatback Turtle - Natator depressus (Vulnerable and Migratory)	Green Turtle <i>– Chelonia muda</i> s (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - Crocodylus porosus (Migratory)	Green Sawfish – <i>Pristis zijsron</i> (Vulnerable and Migratory)
	constitute habitat, it is likely that Flatback Turtles will be present within the Project marine elements from time to time but are not restricted to this area. Furthermore, with the exception of the minor physical wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population.	population surrounding Groote Eylandt. Furthermore, Green Turtles are known to migrate more than 2,600 km between feeding and nesting grounds; therefore, the Project is not expected to place an ecologically significant proportion of the population at risk.	it is likely that Hawksbill Turtles will be present within the Project marine elements from time to time but are not restricted to this area. Furthermore, with the exception of the minor physical wharf infrastructure, Project activities and disturbance will be intermittent and are highly unlikely to lead to long-term decrease in the size of a population.	any potential impact could affect overall species population size negatively.	long-term decrease in the size of a population.
Reduce the area of occupancy of the species	Unlikely. The Flatback Turtle is one of the two species of marine turtles that does not have a global distribution, where it is found only in the tropical waters of northern Australia, Papua New Guinea and Irian Jaya. In northern Australia, Flatback Turtles nest along the entire coastline of the NT, making them the most widespread nesting marine turtles in the region. There is a high likelihood species will be present within the Project area from time to time, however the species is not restricted to this area. The species may continue to utilise Bartalumba	Unlikely. There is a high likelihood species will be present within the Project area from time to time, however the species is not restricted to this area. The species may continue to utilise Bartalumba Bay during construction and operation when moving between areas for nesting or for foraging. It is unlikely the Project will reduce the area of occupancy of the species.	Unlikely. Within the NT, majority of the Hawksbill Turtle population abundance is concentrated around north-eastern Arnhem Land and Groote Eylandt. Hawksbill Turtles forage in tidal and sub-tidal coral and rocky reef habitats, where there is an abundance of algae, sponges and soft corals available. Hawksbill Turtles are highly mobile and migratory, with a global distribution and therefore it is unlikely the Project will reduce the area of occupancy of the species.	Unlikely. The Saltwater Crocodile has a distribution range from Rockhampton QLD throughout the NT to Kind Sound (near Broome) in WA. Due to the species high distribution range and its increasing population size throughout Australia it is very unlikely that this Project would interfere with species overall occupancy.	Unlikely. There are no records of Green Sawfish sightings within or surrounding the Project area. However, there is a high likelihood species will be present within the area from time to time, although the species is not restricted to this area. The species may continue to utilise Bartalumba Bay during construction and operation when and it is unlikely the Project will reduce the area of occupancy of the species.

Criterion	Flatback Turtle – <i>Natator depressus</i> (Vulnerable and Migratory)	Green Turtle - <i>Chelonia muda</i> s (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - Crocodylus porosus (Migratory)	Green Sawfish – <i>Pristis zijsron</i> (Vulnerable and Migratory)
	Bay during construction and operation when moving between areas for nesting or for foraging. It is unlikely the Project will reduce the area of occupancy of the species.				
Fragment an existing population into two or more populations	Unlikely. The Project intersects both habitat critical to the survival of the Flatback Turtle and a BIA inter-nesting zone. However, Flatback Turtles are highly mobile, migratory and widespread within tropical waters of Australia, Irian Jaya and New Guinea. As such, it is unlikely that the Project will fragment an existing population into two or more populations.	Unlikely. The Green Turtle is found in tropical and subtropical waters globally, including Australia; and is one of Australia's most common marine turtles. There are seven regional populations of Green Turtles in Australia are thought to represent genetically distinct subpopulations, with a very low level of genetic exchange between regions. The southern Gulf of Carpentaria population is predicted to have around 5,000 individuals (DEH, 2005). The distribution of the Gulf of Carpentaria stock is from northeast Arnhem Land to southeast Gulf of Carpentaria. As such, it is unlikely that the Project will fragment an existing populations.	Unlikely. There are three genetically distinct stocks of Hawksbill Turtles in Australia, with those at that nest at the Winchelsea/Groote Eylandt area being part of the north-east Arnhem Land stock. The distribution of the north-east Arnhem Land stock is widespread within north-east Arnhem Land including the entire Groote Archipelago. As such, it is unlikely that the Project will fragment an existing population into two or more populations.	Unlikely. Due to the Saltwater Crocodile's high distribution range, its migratory tendency and lack of subpopulation in the Groote Archipelago, it is highly unlikely the Project will fragment an existing population into two or more populations.	Unlikely. Catch records show that the Green Sawfish inhabits all regions of the Gulf of Carpentaria, with a pattern of relative abundance, that is, in low numbers and with a highly variable frequency of occurrence. With Green Sawfish being mobile and widespread in the Gulf of Carpentaria, it is unlikely that the Project will fragment an existing population into two or more populations.

WINCHELSEA MINING

Criterion	Flatback Turtle - <i>Natator depressus</i> (Vulnerable and Migratory)	Green Turtle - <i>Chelonia muda</i> s (Migratory)	Hawksbill Turtle - Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - Crocodylus porosus (Migratory)	Green Sawfish – <i>Pristis zijsron</i> (Vulnerable and Migratory)
Adversely affect habitat critical to the survival of a species	Unlikely. The Project area does intersect habitat critical to the survival of the Flatback Turtle. Habitat intersected by the Project area is likely to be utilised for intermittent foraging. Critical nesting habitat for this species occurs on the northern side of Winchelsea Island and will not be impacted by the Project. The Project will not adversely impact habitat critical to the survival of the species.	Unlikely. The Project area does intersect habitat critical to the survival of the Green Turtle. Habitat intersected by the Project area is likely to be utilised for intermittent foraging. Critical nesting habitat for this species occurs on the northern side of Winchelsea Island and will not be impacted by the Project. The Project will not adversely impact habitat critical to the survival of the species.	Unlikely. The Project area does intersect habitat critical to the survival of the Hawksbill Turtle. Habitat intersected by the Project area is likely to be utilised for intermittent foraging. Critical nesting habitat for this species occurs on the northern side of Winchelsea Island and will not be impacted by the Project. The Project will not adversely impact habitat critical to the survival of the species.	Unlikely. The habitat intersected by the Project is not critical to the survival of the species.	Unlikely. There is suitable Green Sawfish habitat surrounding Winchelsea Island, but there have not been any recorded sightings within area. The habitat intersected by the Project is unlikely to be critical to the survival of the species and adverse impacts to existing habitat is minor.
Disrupt the breeding cycle of a population	Unlikely. In northern Australia, Flatback Turtles nest along the entire coastline of the NT, making them the most wide spread nesting marine turtles in the region. During marine turtle surveys, Flatback Turtle nests were observed on the western beaches of Winchelsea Island, with the nearest being located approximately 4 km north of the wharf. However, very few older nests were identified in this area and the key nesting areas were determined to be on the north of the Island. The Project will not directly disturb any nesting areas,	Unlikely. There are numerous nationally significant breeding sites in the Northern Territory including Cobourg Peninsula, the mainland from Gove to the northern edge of Blue Mud Bay, the southeast of Groote Eylandt, and the northern beaches of islands in the Sir Edward Pellew group. The Project area does not contain any known nesting beaches or defined inter-nesting areas, however field surveys conducted at Winchelsea Island (2020 – 2022) recorded 32 Green Turtle nesting sites along the north / north-east coast and Islands.	Unlikely. The Groote Archipelago is known to be an important breeding area for the north-east Arnhem Land Hawksbill Turtle population. Field surveys conducted at Winchelsea Island (2020 – 2022) recorded 104 Hawksbill Turtle nesting sites along the north / north-east coast and islands. These nests were recorded high along the beach, adjacent to trees and shrubs. Majority of nests recorded at Winchelsea Island during the survey period were recorded in October 2021. The Project will not directly disturb any nesting areas, lighting would	Unlikely. Saltwater Crocodile's nesting period is between November and May, with peak nesting occurring during January and February. Female Saltwater Crocodile will stay close by to guard eggs. Preferred nesting habitat of the Saltwater Crocodile includes elevated, isolated freshwater swamps that do not experience the influence of tidal movements. There is no suitable nesting habitat in close proximity to the Project.	Unlikely. Green Sawfish uses soft bottom inshore areas for breeding. Juvenile sawfish are limited to shallow areas; therefore they could be negatively impacted by dredged channels or increased depths. Catch records show that the Green Sawfish inhabits all regions of the Gulf of Carpentaria and the Project is unlikely to disrupt the breeding cycle of a population.

WINCHELSEA MINING

Criterion	Flatback Turtle – <i>Natator depressus</i> (Vulnerable and Migratory)	Green Turtle - <i>Chelonia mudas</i> (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - <i>Crocodylus porosus</i> (Migratory)	Green Sawfish – <i>Pristis zijsron</i> (Vulnerable and Migratory)
	lighting would not be directly visible at the key northern nesting beaches and various management measures to prevent impacts to the species have been included in the EIS.	All Green Turtle nests on Winchelsea Island were identified on the northern beaches. The Project will not directly disturb any nesting areas, lighting would not be directly visible at the key northern nesting beaches and various management measures to prevent impacts to the species have been included in the EIS.	not be directly visible at the key northern nesting beaches and various management measures to prevent impacts to the species have been included in the EIS.		
Modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline	Unlikely. The Project will not impact nesting habitat. With regard to foraging habitat, the cumulative benthic loss assessment identified benthic communities in Bartalumba Bay with seagrass totalling 436.74 ha and a predicted irreversible loss to these areas of 5.22 ha (1.2%) from the Project. Such an impact is unlikely to result in a species decline in the population surrounding Groote Eylandt. The modelled temporary outer extents of the ZoMI and ZoHI from the dredge plume is 138.2 ha. The spatially localised plumes are predicted to be short- lived (roughly three weeks) with irreversible impacts to marine	Unlikely. The Project will not impact nesting habitat. With regard to foraging habitat, the cumulative benthic loss assessment identified benthic communities in Bartalumba Bay with seagrass totalling 436.74 ha and a predicted irreversible loss to these areas of 5.22 ha (1.2%) from the Project. Such an impact is unlikely to result in a species decline in the population surrounding Groote Eylandt. The modelled temporary outer extents of the ZoMI and ZoHI from the dredge plume is 138.2 ha. The spatially localised plumes are predicted to be short- lived (roughly three weeks) with irreversible impacts to marine	Unlikely. Hawksbill Turtles spend their first five to ten years drifting on ocean currents, whereafter it resides in soft coral and sandy habits globally. Hawksbill Turtles are known to migrate up to 2,400 km between foraging areas and nesting beaches, suggesting they are adaptable to find new resources if disruption occurs. As such, it is considered unlikely that the Project will modify, destroy, remove, isolate or decrease the availability or quality of habitat to the extent that the species is likely to decline.	Unlikely. The species experiences negative effects due to habitat destruction. Nonetheless, the Saltwater Crocodile has an overall increasing tendency in population size throughout Australia and is widespread.	Unlikely. There is suitable Green Sawfish habitat surrounding Winchelsea Island, but there have not been any recorded sightings within area. The habitat intersected by the Project is unlikely to be critical to the survival of the species and the extent of potential adverse impacts to existing habitat from the Project is unlikely to result in a species decline.

WINCHELSEA MINING

Criterion	Flatback Turtle - <i>Natator depressus</i> (Vulnerable and Migratory)	Green Turtle - <i>Chelonia mudas</i> (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - <i>Crocodylus porosus</i> (Migratory)	Green Sawfish – <i>Pristis zijsron</i> (Vulnerable and Migratory)
	limited to 22.8 ha with the majority being low productivity bare substrate environments. Such an area of impact is unlikely to result in a species decline. Given the proposed Project operations, limited use of chemicals (e.g., no chemicals used for processing) and management commitments the Project is unlikely to produce impacts that that would result in species decline. The portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago.	limited to 22.8 ha with the majority being low productivity bare substrate environments. Such an area of impact is unlikely to result in a species decline. Given the proposed Project operations, limited use of chemicals (e.g., no chemicals used for processing) and management commitments the Project is unlikely to produce impacts that that would result in species decline. The portion of marine area proposed to be temporarily disturbed is a small fraction of the suitable habitat in the Groote Archipelago.			
Result in invasive species that are harmful to a critically endangered or endangered species becoming established in the endangered or critically endangered species' habitat	Unlikely. There are no known marine invasive species that directly affect the species. Nevertheless, management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing marine invasive species to the waters surrounding Winchelsea Island.	Unlikely. During the construction and operational phases of the Project, there is an increase in potential for weed and pest species to move into the adjacent retained areas of potential habitat. Hygiene protocols will be implemented within operational area to reduce weeds or diseases that may be introduced to the site, and active pest management will be enforced to reduce introduced predators.	Unlikely. Management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing invasive species to Winchelsea Island. It is therefore unlikely that the Project would result in invasive species that are harmful to marine turtles becoming established in the species' habitat.	Unlikely. Invasive species have the potential to be of concern to Saltwater Crocodiles which is stated in the North Marine Plan (DSEWPaC, 2012a; Table 14). However, invasive species risk is primarily related to the river habitat. Management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing invasive species to Winchelsea Island.	Unlikely. Management measures will be implemented regarding hygiene controls and biosecurity measures to reduce the possibility of introducing invasive species to Winchelsea Island.

WINCHELSEA MINING

Criterion	Flatback Turtle - Natator depressus (Vulnerable and Migratory)	Green Turtle <i>- Chelonia muda</i> s (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - <i>Crocodylus porosus</i> (Migratory)	Green Sawfish - Pristis zijsron (Vulnerable and Migratory)
Introduce disease that may cause the species to decline	Unlikely. Flatback Turtles may contract Fibropapillomatosis (FP), a tumour-causing disease that results in tumour masses on the skin, including around the eyes, mouth, and in internal organs. It is thought that human disturbance of the environment and pollution may influence FP, however this is not confirmed. To date, within Australia there have been no recorded occurrences of turtles contracting diseases and pathogens. The Project is unlikely to introduce disease that may cause the Flatback Turtle species to decline.	Unlikely. Marine turtles are known to obtain diseases as a result of poor water quality and bacterial infections from vessel strike and ghost fishing entanglement. Green Turtles have been documented to contract FP, a tumour-causing disease that results in tumour masses on the skin, including around the eyes, mouth, and in internal organs. It is thought that human disturbance on the environment and pollution may influence FP, however this is not confirmed. To date, within Australia there have been no recorded occurrences of turtles contracting diseases and pathogens. The Project is unlikely to introduce disease that may cause the species to decline and will have hygiene protocols implemented to reduce the risk of disease introduction to the island.	Unlikely. Hawksbill Turtles have been documented to contract FP, a tumour-causing disease that results in tumour masses on the skin, including around the eyes, mouth, and in internal organs. It is thought that human disturbance on the environment and pollution may influence FP, however this is not confirmed. To date, within Australia there have been no recorded occurrences of turtles contracting diseases and pathogens. The Project is unlikely to introduce disease that may cause the Hawksbill turtle species to decline.	Unlikely. The Project is unlikely to introduce diseases that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.	Unlikely. The Project is unlikely to introduce diseases that might cause the species to decline. The quarantine protocols for the Project are designed to minimise associated risks.
Interfere with the recovery of the species.	Unlikely. Given the widespread distribution of the species within its range, any potential impact on the Flatback Turtle is expected to be minor and construction	Unlikely . The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.	Unlikely . The scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.	Unlikely. The species has an overall increasing population trend throughout Australia. The scale or the Project and limited marine disturbance is unlikely to	Unlikely. Green Sawfish are believed to be long-lived with low fecundity and late maturity (Stevens et al., 2005; Walker, 1998; Stobutzki et al., 2002).

Criterion	Flatback Turtle - Natator depressus (Vulnerable and Migratory)	Green Turtle <i>- Chelonia mudas</i> (Migratory)	Hawksbill Turtle – Eretmochelys imbricata (Vulnerable and Migratory)	Saltwater Crocodile - <i>Crocodylus porosus</i> (Migratory)	Green Sawfish – Pristis zijsron (Vulnerable and Migratory)
	impacts are temporary. As the species are highly mobile and migratory, the Project is unlikely to interfere with the recovery of the Flatback Turtle.			interfere with the recovery of the species.	Therefore, the recovery rate of this species would be slow. However, the scale or the Project and limited marine disturbance is unlikely to interfere with the recovery of the species.

10.2.5 Migratory Species - Significant Impact Assessment

Of the 47 migratory species identified in the PMST search (Appendix L), 16 are also listed as threatened species. The list of migratory species identified in the PMST report and corresponding records in the NT Fauna Atlas or from field surveys are listed in Table 10.2-7.

Table 10.2-7Migratory Species Identified in the PMST Report and Fauna Atlas as Occurring, or Potentially
Occurring within 10 km of the Project area.

Species	Common Name	PMST	NT Fauna Atlas	Recorded on Winchelsea Island (EMS 2023a,b,c)
Migratory Birds				
Acrocephalus orientalis	Oriental Reed-Warbler	~	-	-
Anous stolidus	Common Noddy	~	-	-
Actitis hypoleucos	Common Sandpiper	~	✓	-
Apus pacificus	Fork-tailed Swift	✓	✓	-
Calidris acuminata	Sharp-tailed Sandpiper	~	✓	-
Calidris canutus	Red Knot	~	-	-
Calidris ferruginea	Curlew Sandpiper	~	✓	✓
Calidris melanotos	Pectoral Sandpiper	~	-	-
Calonectris leucomelas	Streaked Shearwater	~	-	-
Cecropis daurica	Red-rumped Swallow	×	-	-
Charadrius leschenaultii	Greater Sand Plover	~	✓	✓
Charadrius veredus	Oriental Plover	~	✓	-
Cuculus optatus	Oriental Cuckoo	1	✓	-
Fregata ariel	Lesser Frigatebird	×	✓	-
Fregata minor	Great Frigatebird	~	-	-
Glareola maldivarum	Oriental Pratincole	~	✓	-
Hirundo rustica	Barn Swallow	~	✓	-
Limnodromus semipalmatus	Asian Dowitcher	~	-	-
Limosa lapponica	Bar-tailed Godwit	~	✓	-
Motacilla cinerea	Grey Wagtail	~	-	-
Motacilla flava	Yellow Wagtail	~	-	-
Numenius madagascariensis	Eastern Curlew	~	✓	✓
Phaethon lepturus	White-tailed Tropicbird	~	-	-
Sterna dougallii	Roseate Tern	~	-	~
Pandion haliaetus	Osprey	✓	✓	-

Species	Common Name	PMST	NT Fauna Atlas	Recorded on Winchelsea Island (EMS 2023a,b,c)
Tringa nebularia	Common Greenshank	✓	-	✓
Migratory Marine Species (Excluding	Birds)			
Balaenoptera musculus	Blue whale	✓	-	-
Balaenoptera edeni	Bryde's Whale	✓	-	-
Dugong dugon	Dugong	✓	✓	-
Orcaella heinsohni	Australian Snubfin Dolphin	✓	✓	-
Orcinus orca	Killer Whale	✓	-	-
Sousa sahulensis as Sousa chinensis	Australian Humpback Dolphin	✓	✓	-
Caretta caretta	Loggerhead Turtle	✓	-	-
Chelonia mydas	Green Turtle	✓	✓	\checkmark
Crocodylus porosus	Saltwater Crocodile	✓	✓	-
Dermochelys coriacea	Leatherback Turtle	✓	-	-
Eretmochelys imbircata	Hawksbill Turtle	✓	-	✓
Lepidochelys olivacea	Olive Ridley Turtle	✓	-	\checkmark
Natator depressus	Flatback Turtle	✓	✓	✓
Anoxypristis cuspidata	Narrow Sawfish	✓	-	-
Carcharodon carcharias	White Shark	✓	-	-
Mobula alfredi as Manta alfredi	Reef Manta Ray	✓	-	-
Mobula birostris as Manta birostris	Giant Manta Ray	✓	-	-
Pristis clavate	Dwarf Sawfish	~	-	-
Pristis pristis	Freshwater Sawfish	~	-	-
Pristis zijsron	Green Sawfish	✓	-	-
Rhincodon typus	Whale Shark	✓	-	-

A total of 22 migratory shorebird or marine bird species were recorded on Winchelsea Island during the field surveys (refer to Table 10.2-8). Small populations of migratory shorebirds were present in coastal regions of Winchelsea Island during the November 2018, October/December 2021 and August/October 2022 surveys, with larger abundances of aerial counts (109) present in December 2021 and 96 in August 2022.

There were no nationally or internationally significant habitats for migratory shorebirds recorded on Winchelsea Island (EMS, 2023c). However, it is evident that small numbers of migratory shorebirds are present on the western and southeastern coastal areas of the island, with larger populations present during the wet seasons months, being October to March (DEE, 2017 in EMS, 2023c). Additionally, numerous locations on Winchelsea Island were identified as being of local significance for wetland and marine bird species, being brackish wetlands on the north-western coastline, tidal flats on the western coast, salt plans and mudflats in the southern and south-eastern coast (EMS, 2023c). Under the EPBC Act and in accordance with the 'Matters of National Environmental Significance, Significant Impact Guidelines 1.1 (Significant Impact Guidelines 1.1)' (DoE, 2013), important migratory shorebird habitat include those recognised as nationally or internationally important. Internationally important habitats are habitats that regularly support either of the following:

- 1 percent (%) of the individuals in a population of one species or subspecies of waterbird; or
- A total abundance of at least 20,000 waterbirds.

Whereas nationally important habitats are habitats that regularly support any of the following;

- 0.1 % of the flyway population of a single species of migratory shorebird; OR
- 2,000 migratory shorebirds; or
- 15 migratory shorebird species.

Migratory shorebirds are present at small numbers on Winchelsea Island, and none exceed significance thresholds for 1% or 0.1% of the flyway population. The surveys conducted by EMS concluded that the number of species, being 13, and the maximum shorebird count, being 116, are both below the significance threshold for species richness and numbers at a location.

WINCHELSEA MINING

Table 10.2-8 Listed Migratory Bird Species

Common Name	Scientific Name	Status EPBC	Migratory EPBC Act	Current Survey	Max Count	Broad Habitat	Local Status
Pacific Golden Plover	Pluvialis fulva		Migratory	 ✓ 	8	Tidal flats, mud flats, salt pans	Small numbers, western tidal flats
Grey Plover	Pluvialis squatarola		Migratory	~	14	Tidal flats, mud flats, salt pans	Small numbers, western tidal flats
Lesser Sand Plover	Charadrius mongolus	Endangered	Migratory	V	58	Tidal flats, mud flats, salt pans	Small numbers, tidal flats, salt pans
Greater Sand Plover	Charadrius leschenaultii	Vulnerable	Migratory	V	25	Tidal flats, mud flats, salt pans	Small numbers, tidal flats
Eastern Curlew	Numenius madagascariensis	Critically Endangered	Migratory	V	12	Tidal flats, mud flats, salt pans	Small numbers, tidal flats
Whimbrel	Numenius phaeopus		Migratory	~	11	Tidal flats, mud flats, salt pans	Small numbers, tidal flats
Common Greenshank	Tringa nebularia		Migratory	V	3	Tidal flats, mud flats, salt pans	Small numbers feeding on tidal flats, brackish wetlands
Marsh Sandpiper	Tringa stagnatilis		Migratory	~	1	Tidal flats, mud flats, salt pans	Small numbers feeding on tidal flats
Grey-tailed Tattler	Tringa brevipes		Migratory	~	20	Tidal flats, mud flats, salt pans, rocky headlands	Small numbers, coastal flats and rocks
Curlew Sandpiper	Calidris ferruginea	Critically Endangered	Migratory	V	6	Tidal flats, mud flats, salt pans	Small numbers, SE coastal mudflats
Common Sandpiper	Actitis hypoleucos		Migratory	1	4	Tidal flats, mud flats, salt pans, rocky headlands	Small numbers feeding on tidal flats
Red-necked Stint	Calidris ruficollis		Migratory	~	39	Tidal flats, mud flats, salt pans	Small numbers, coastal flats and rocks
Sharp-tailed Sandpiper	Calidris acuminata		Migratory	1	88	Tidal flats, mud flats, salt pans, wetlands	Small numbers, coastal flats, brackish wetlands
(Australian) Gull-billed Tern*	Gelochelidon nilotica macrotarsa		Migratory	V	17	Marine and coastal habitats, sandy beaches	Small numbers, coastal flats, brackish wetlands

WINCHELSEA MINING

Common Name	Scientific Name	Status EPBC	Migratory EPBC Act	Current Survey	Max Count	Broad Habitat	Local Status
Caspian Tern	Hydroprogne caspia		Migratory	~	2	Marine and coastal habitats, sandy beaches, rocky shores	Small numbers, coastal flats
Crested Tern	Thalasseus bergii		Migratory	~	25	Marine and coastal habitats, sandy beaches, rocky shores	Small numbers, coastal flats/rocks
Common Tern	Sterna hirundo		Migratory	~	27	Marine and coastal habitats, sandy beaches, rocky shores	Small numbers, coastal flats/rocks
Little Tern	Sternula albifrons		Migratory	~	6	Marine and coastal habitats, sandy beaches, rocky shores	Small numbers, coastal flats
Black-naped Tern	Sterna sumatrana		Migratory	~	4	Marine and coastal habitats, sandy beaches, rocky shores	Small numbers, coastal flats
Lesser Frigatebird	Fregata ariel		Migratory	х	0	Offshore marine	One offshore record, existing data
Eastern Osprey	Pandion haliaetus		Migratory	~	6	Coastal marine, rocky headlands	Small numbers, coastal areas and rocky shores
Fork-tailed Swift	Apus pacificus		Migratory	~	10	Aerial feeder in broad range of habitats	Open forest. Non-resident
Arafura Fantail	Rhipidura rufifrons dryas		Migratory	✓	4	Monsoon vine forest, riparian forest, Callitris woodland, mangroves	Small numbers, monsoon forest, mangrove and Callitris patches
Total Species		4	23	22			

* Field identification between gull-billed tern and Australian gull-billed tern not resolved during survey.

Section 15 References

15.1 Sections 1 to 6

Anindilyakwa Land Council (ALC) (n.d). Anindilyakwa Land Council 15 Year Strategic Plan 2012-2027. ALC, Alyangula, Northern Territory.

Anindilyakwa Land Council (ALC). (2020). Anindilyakwa Land Council Annual Report 2019-20. Anindilyakwa Land Council Annual Report 2019-20, Transparency Portal.

Anindilyakwa Land Council (ALC) (2022a), Sustainable Development, <u>https://anindilyakwa.com.au/mining-and-environment/sustainable-development/</u>.

Anindilyakwa Land Council (ALC) (2022b), The Groote Archipelago Region, <u>https://anindilyakwa.com.au/about/the-groote-archipelago-region/</u>.

Anindilyakwa Land Council (ALC) (2022c), Invested in Our Future Groote – Building the foundations for a sustainable future cultural economy, <u>https://anindilyakwa.com.au/app/uploads/2022/06/Invested-in-Our-Future-Groote.pdf</u>.

Anindilyakwa Land Council (ALC) (2023a), History, https://anindilyakwa.com.au/about/history/.

Anindilyakwa Land Council (ALC) (2023b), Traditional Culture, <u>https://anindilyakwa.com.au/preserving-culture/anthropology/traditional-culture/</u>

Anindilyakwa Land Council (ALC) (2023c), 6 Local Decision Making Agreements, <u>https://anindilyakwa.com.au/future-groote/6-local-decision-making-agreements/</u>.

Ausenco (2020) Winchelsea Project Process Plant Concept Study. Ausenco Pty Ltd. Prepared for Winchelsea Minign Pty Ltd.

Australian Bureau of Statistics (ABS) (2021). 2021 Census QuickStats East Arnhem. Available at: <u>https://abs.gov.au/census/find-census-data/quickstats/2021/LGA71300</u>.

Australian Government (2022), Australian Government Climate Change commitments, policies and programs. Australian Office of Financial Management, Canberra Australia. Viewed 21 April 2023, <u>https://www.aofm.gov.au/sites/default/files/2022-11-</u> 28/Aust%20Govt%20CC%20Actions%20Update%20November%202022_1.pdf.

Britannica (2023), The Editors of Encyclopaedia. "manganese". *Encyclopedia Britannica*, 2 Mar. 2023, <u>https://www.britannica.com/science/manganese</u>.

Clarke, A. (1994). Winds of Change: an archaeology of contact in the Groote Eylandt Archipelago, Northern Australia. Unpublished PhD thesis, Australian National University.

Commonwealth of Australia (2009). National Guidelines for Dredging. Commonwealth of Australia, Canberra.

Commonwealth of Australia (2021). Bilateral Agreement made under section 45 of the Environment Protection and Biodiversity Conservation Act 1999 (Cth) relating to environmental assessment – Commonwealth of Australia and The Northern Territory of Australia. Commonwealth of Australia, Canberra.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2023), Climate Change in Australia: Climate information, projections, tools and data. Canberra, Australia. Viewed 21 April 2023. <u>https://www.climatechangeinaustralia.gov.au/en/projections-tools/.</u>

Convention on Migratory Species (CMS) (1979). Convention on Migratory Species of Wild Animals.

Department of Environment and Natural Resources (DENR) (2020). Northern Territory Offsets Principles, V1.0, June 2020. Northern Territory Government. Available <u>https://depws.nt.gov.au/__data/assets/pdf_file/0005/901877/nt-offsets-framework-principles.pdf.</u>

DEWHA (Australian Government Department of the Environment, Water, Heritage and the Arts). (2007). Characterisation of the marine environment of the north marine region: outcomes of an expert workshop convened in Darwin., Northern Territory, 2-3 April 2007, DEWHA, Canberra. <u>http://www.environment.gov.au/resource/characterisation-marine-environment-north-marine-region-outcomes-expert-workshop-2-3-april</u>.

Department of Foreign Affairs and Trade (DFAT) (2016). Tailings Management: Leading Practice Sustainable Development Program for the Mining Industry. Australian Government.

Department of Lands, Planning and Environment (1999), Water Resources of East Arnhem Land, Viewed 24 April 2023, Available: <u>https://frackinginquiry.nt.gov.au/__data/assets/pdf_file/0010/433387/02_99D_Water-Resources-of-East-Arnhem-Land_Main-Report.pdf</u>

Department of Natural Resources, Environment, The Arts and Sport (DNREAS, n.d.), Sites of Conservation Significance-Groote Eylandt Group.

Department of the Environment (DotE) (2013). Matters of National Environmental Significance, significant impact guidelines 1.1 *Environment Protection and Biodiversity Conservation Act 1999*. Australian Government.

EcOz Environmental Consultants (2019). Barge landing benthic impact assessment. (Prepared for ADG Engineering Pty Ltd).

Gardline Marine Sciences Pty Ltd (2011). Groote Eylandt Marine Survey (Exploration Licence Area 27523). Report 8661/Geo(00).

GHAC (2022) Groote Eylandt Little Paradise Development Master Plan. Groote Holdings Aboriginal Corporation – July 2022.

Hamm G, Mitchell P, Arnold L, Prideaux J, Questiaux G, Spooner D, Stephenson N (2016). Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature, 539(7628), 280.

International Association for Public Participation (IAP2) (2015). Quality Assurance Standard for Community and Stakeholder Engagement. Available at: <u>https://iap2a.my.site.com/portal/s/resources</u>.

International Energy Agency (IEA) (2021), The Role of Critical Minerals in Clean Energy Transitions, IEA, Paris <u>https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions</u>, License: CC BY 4.0

International Erosion Control Association (IECA) Australasia (2008). Best Practice Erosion & Sediment Control. Available at: <u>https://www.austieca.com.au/publications/best-practice-erosion-and-sediment-control-bpesc-document</u>.

International Finance Corporation (IFC) (2007). Stakeholder Management: A Good Practice Handbook for Companies Doing Business in Emerging Markets. Available at: <u>https://www.ifc.org/en/insights-reports/2000/publications-handbook-stakeholderengagement--wci--1319577185063</u>.

Joint Ore Reserves Committee (JORC) (2012). Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. The JORC Code online.- 2012 Edition. Available from: <u>http://www.jorc.org</u> (The Joint Ore Reserve Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Mineral Council of Australia.

Jones, T.S., (1985). Manganese is essential to iron and steel production. No prac. Bulletin, (675), p.483.

Macknight C (1976). The Voyage to Marege. Macassan Trepangers in Northern Australia. Melbourne University Press: Melbourne.

Martins S, Soong B, Wong V, Giunti P, Stevanin G, Ranum L, Coutinho P (2012). Mutational origin of Machado-Joseph disease in the Australian Aboriginal communities of Groote Eylandt and Yirrkala. Archives of neurology, 69(6), 746-751.

National Indigenous Australians Agency (NIAA) (2023), Anindylakwa IPA and Rangers. Viewed 20 September 2023, https://www.niaa.gov.au/indigenous-affairs/environment/anindilyakwa-ipa-and-rangers.

Northern Territory Environment Protection Authority (NT EPA) (2021a). Preparing and environmental impact statement (EIS) – Environmental impact assessment guidance for proponents. Version 1.0. (dated 26 February 2021). NT EPA Darwin.

Northern Territory Environment Protection Authority (NT EPA) (2021b). Stakeholder Engagement and Consultation – Environmental Impact Assessment Guidance for Proponents. Version 2.0 (dated 6 January 2021), NT EPA, Darwin.

Northern Territory Environment Protection Authority (NT EPA) (2022). NT EPA Environmental factors and objectives: Environmental impact assessment – General technical guidance. Version 3.0 (dated 6 January 2021), NT EPA, Darwin.

Northern Territory Environment Protection Authority (NT EPA) (No Date). Referring a significant variation to the NT EPA – Environmental impact assessment guidance for proponents. Draft for consultation, NT EPA, Darwin.

Northern Territory Government (2020). *Northern Territory Offsets Principles*. Department of the Environment and Natural Resources, Flora and Fauna Division, Darwin.

Northern Territory WorkSafe (NTWorkSafe) (2023). Hazardous Chemicals. Viewed 21 April 2023. <u>https://worksafe.nt.gov.au/safety-and-prevention/hazardous-</u> <u>chemicals#:~:text=Chemicals%20are%20considered%20hazardous%20if.of%20solids%2C%20liquids%20or%20gases</u>.

Northern Territory Government (NT Government) (2020), Northern Territory Climate Change Response: Towards 2050.

Northern Territory Government (NT Government) (2019), Groote Archipelago – Local Decision Making Agreement: Schedule 3.2 – Economic Development Implementation Plan, <u>https://ldm.nt.gov.au/__data/assets/pdf_file/0008/791315/galdm-agreement-edip.pdf</u>.

SHIM Consulting (2023). Akwamburrkba (Winchelsea Island) Cultural Heritage Management Plan. Report Prepared for Winchelsea Mining Pty Ltd. July 2023.

Spillett P (1989). Aboriginal - Makassar Relationships: Groote Eylandt. Paper presented at the State Archives Seminar 4 July 1989.

Summerfield, D. 2021. Australian Resource Reviews: Manganese Ore 2020. Geoscience Australia, Canberra.

Theden-Ringl F, Fenner J, Wesley N, and Lamilami R (2011). Buried on foreign shores: isotope analysis of the origin of human remains recovered from a Macassan site in Arnhem Land. Australian Archaeology, 73(1), 41-48.

The University of Sydney (2023), Moiety. Available at: <u>https://www.sydney.edu.au/about-us/vision-and-values/our-aboriginal-and-torres-strait-islander-community/kinship-module/learning-module/moiety.html#:~:text=In%20this%20section%20you%20will,and%20patrilineal%20lines%20of%20descent.</u>

Tindale N (1925). Natives of Groote Eylandt and of the west coast of the Gulf of Carpentaria. Records of the South Australian Museum, 3(1), 60-135.

United States Geological Survey (USGS) (2023), 2022 Final List of Critical Minerals. U.S. Geological Survey, Department of the Interior. Washington DC.

WANT Geotechnics (2023), Report on the Investigation and Testing of a Potential Sandstone Resource: Winchelsea Island, Northern Territory. Prepared for Sitzler.

Williams, D. J (2014). An alternative whole-of-life approach to tailings management. Life-of-Mine 2014, Brisbane, QLD, Australia, 16-18 July 2014. Carlton, VIC, Australia: AUSIMM.

World Heritage Convention (WHC) (1972). Convention Concerning the Protection of the World Cultural and Natural Heritage. Available at: <u>http://whc.unesco.org/en/conventiontext/</u>.

15.2 Section 7

Anindilyakwa Land Council (ALC). (2019). Anindilyakwa Land Council Annual Report 2018-19. Accessed on 13 August 2020. Available at: <u>https://www.transparency.gov.au/publications/prime-minister-and-cabinet/anindilyakwa-land-council-annual-report-2019-20/anindilyakwa-land-council</u>.

Australian Bureau of Statistics (ABS) (2021). 2021 Census Quickstats – Anindilyakwa (Groote). Accessed July 2023.

Australia and New Zealand Guidelines (ANZG). (2018). *Default Guideline Values*. Available at: <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default</u>. Accessed 10 February 2023.

Australian Institute of Marine Science (AIMS). (2019). Anindilyakwa IPA Sediment Grain Size and Trace Elements. Report Prepared for Anindilyakwa Land Council. Australian Institute of Marine Science, Townsville

Bolton, R. B., Pracejus, B. and Frakes, A. L. (1988). Nature and development of supergene manganese deposits, Groote Eylandt, Northern Territory, Australia. Science Direct, 4 (1-2), pg. 71-98.

Bureau of Meteorology (BoM). (2023a). Climate statistics for Australia Locations – Groote Eylandt Airport. Commonwealth of Australia. Available at: <u>http://www.bom.gov.au/climate/averages/tables/cw_014518.shtml</u>. Accessed: 28 March 2023.

Bureau of Meteorology (BoM). (2023b). Evaporation: Average Monthly and Annual Evaporation. Australian Government. <u>http://www.bom.gov.au/watl/evaporation/</u>. Accessed: 28 March 2023.

Bureau of Meteorology (BoM). (2023c). Wind speed and direction rose - Alyangula Police (014507) <u>http://www.bom.gov.au/cgi-</u>

<u>bin/climate/cgi bin scripts/windrose selector.cgi?period=Annual&type=9&location=14507</u>. Accessed 20 February 2023 and 28 March 2023.

CDM Smith (2023). Winchelsea Manganese Mine – Baseline Marine Quality Sampling 2022. Prepared for Winchelsea Mining Pty Ltd, March 2023.

Clark, M. and May, K. S. (2013). Macassan History and Heritage. Australian National University.

Datry, T., Larned, S.T. and Tockner, K. (2014) Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience, 64 (3), March 2014, Pages 229-235. <u>https://doi.org/10.1093/biosci/bit027</u>.

Department of Environment (2015) Wildlife Conservation Plan for Migratory Shorebirds. Commonwealth of Australia, Canberra.

Department of the Environment (2013). Matters of National Environmental Significance, significant impact guidelines 1.1 Environment Protection and Biodiversity Conservation Act 1999. Australian Government.

Department of Environment and Natural Resources (DENR) (2019). NR Maps Natural Resource Maps. Accessed January 2019. <u>http://nrmaps.nt.gov.au/nrmaps.html</u>.

Ecological Management Services (EMS). (2019). Winchelsea (Akwamburrkba) Island Terrestrial Ecology Assessment EL27521. (Prepared for Winchelsea Mining Pty Ltd, February 2019).

Ecological Management Services (EMS). (2022a). Winchelsea (Akwamburrkba) Island Marine Turtle Nesting 2018-2022 Final Report. Report prepared for Winchelsea Mining Pty Ltd.

Ecological Management Services (EMS). (2022b). Winchelsea (Akwamburrkba) Island Migratory Shorebirds and Wetland Birds 2018-2022 Final Report. Report prepared for Winchelsea Mining Pty Ltd

Ecological Management Services (EMS). (2023). Winchelsea (Akwamburrkba) Island Manganese Mine Project Terrestrial Ecology Technical Report. Report prepared for Winchelsea Mining Pty Ltd.

Ferenczi, P. (2001). Iron ore, Manganese and Bauxite Deposits of the Northern Territory Report 13. NT Government Department of Business Industry and Resource Development, Darwin.

Ferns, L. W. (2016). Coral communities in extreme environmental conditions in Northern Territory, Australia. Northern Territory Naturalist. 27: 84-96

Fisher, A. (2009). Sites of conservation importance in the Northern Territory: Groote Eylandt Group. <u>https://nt.gov.au/environment/environment-data-maps/important-biodiversity-conservation-sites/conservation-significance-list</u>.

GHD, 2013. Report for Gulf of Carpentaria Storm Tide and Inundation Study: Stages 1 and 2 Final Report. Prepared by GHD Pty Ltd for the Queensland Department of Science, Information Technology, Innovation and the Arts.

Hoenmner, X., Whiting, S.D., Hamman, M., Limpus, C.J., Hindell, M.A. and McMahon, C.R. (2016). High-resolution movements of critically endangered hawksbill turtles help elucidate conservation requirements in northern Australia. Marine and Freshwater Research 67: 1263-1278.

Hunter A, David G, Amir A, Nasir A, von Hippel W, von Hippel F, Angilletta M, and Wilson R, (2018). Bioaccumulation of manganese and its health effects in Anindilyakwa of Groote Eylandt, Australia. University of Queensland Manganese Research.

Info-Pacific Environmental (2019) Benthic Survey of Potential Barge Landing Site at Winchelsea Island. Indo-Pacific Environmental Pty Ltd, Prepared for Winchelsea Mining Pty Ltd.

Katestone (2015). Air Quality Assessment Report for the Eastern Leases Project, Katestone Environmental Pty Ltd, May 2015.

Lynch, B.T. and Wilson, (1998). *Land Systems of Arnhem Land. Report No. R97/1*. Natural Resources Division, Department of Lands, Planning and Environment.

Maher, J., Cribb, H, and Beatty, A. (2011) Monitoring for Marine Pests – Gove Harbour, Groote Eylandt and Melville Island. 2009-10 Report.

Munson, T.J., Ahmad, M. and Dunster, J.N. (2013). Geological and Mineral Resources of the Northern Territory: Chapter 39 Carpentaria Basin. In: Ahmad, M. and Munson, T.J. (2013). *Geology and mineral resources of the Northern Territory*. Northern Territory Geological Survey, Special Publication 5.

Ndevr Environmental (2023), Groote Eylandt Emissions Inventory and Strategic Trajectory.

NT Government Department of Resources. NT Government (2019) Insects of Medical Importance. Northern Territory Government

O2Marine (2022) Conservation Significant Marine Fauna Desktop Assessment: Winchelsea Island Manganese Mine Project EIS. Report to CDM Smith. WA Marine, Fremantle.

Oakwood, M. (2008). Northern quoll, Dasyurus hallucatus. In 'The Mammals of Australia', (Eds S Van Dyck and R Strahan), pp. 57-59. New Holland, Sydney.

Oakwood, M., Woinarski, J. & Burnett, S. 2016. Dasyurus hallucatus. The IUCN Red List of Threatened Species 2016: e.T6295A21947321. <u>https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T6295A21947321.en</u>.

Pettit, W. and Copley, N. (2017) Groote Eylandt exotic mosquito survey report. NT Department of Health

Roy, S. J. (1981). Manganese Deposits. Academic Press, London.

Seashore Engineering. (2023), Winchelsea Island Manganese Mine Project - Coastal Processes Assessment, Western Australia, Perth.

SHIM Consulting. (2018). Report on the Cultural Heritage of Akwamburrkba (Winchelsea Island). Prepared for Anindilyakwa Land Council.

Taylor, S. (2016). Anindilyakwa Indigenous Protected Area Plan of Management 2016. Anindilyakwa Land Council.

Trott LA (ed) (2012). Milner Bay Project: Marine Environmental Survey. Report produced for GEMCO – BHP Billiton. Australian Institute of Marine Science, Townsville.

Ujvari, B., Oakwood, M. & Madsen, T. (2013). Queensland northern quolls are not immune to cane toad toxin. Wildlife Research, 40 (3), 228-231

Woinarski, J.C.Z., Oakwood, M., Winter, J., Burnett, S., Milne, D., Foster, P., Myles, H., and Holmes, B. (2008). Surviving the toads: patterns of persistence of the northern quoll Dasyurus halluctus in Queensland. Report to The Australian Government's Natural Heritage Trust, March 2008.

15.3 Section 8

Northern Territory Environment Protection Authority (NT EPA) (2021a). Environmental impact assessment guidance for proponents – Preparing a proponent initiated referral. Version 1.0 (dated 2 June 2021), NT EPA Darwin.

Northern Territory Environment Protection Authority (NT EPA) (2021b). Preparing and environmental impact statement (EIS) – Environmental impact assessment guidance for proponents. Version 1.0 (dated 26 February 2021). NT EPA Darwin.

Northern Territory Environmental Protection Authority (NT EPA) (2022). NT EPA Environmental factors and objectives - Environmental impact assessment: General technical guidance. Version 3.0 (dated 22 May 2022). NT EPA Darwin.

15.4 Section 9

15.4.1 Section 9.1 (Landforms)

Anindilyakwa Land Council (ALC) (2016). Anindilyakwa Indigenous Protected Area Plan of Management 2016.

Australia and New Zealand Government (ANZG) (2018). Guidelines for Fresh and Marine Water Quality (95%). Australia Government. Available at: <u>https://www.waterquality.gov.au/anz-guidelines</u>.

Australian Government (2016). Tailings Management: Leading Practice Sustainable Development Program for the Mining Industry. Available at: <u>https://www.industry.gov.au/publications/leading-practice-handbooks-sustainable-mining/tailings-management</u>. Accessed 12 July 2023.

Bland H and Pyne L (2023). ALC Cultural Survey Report Winchelsea Island. A report by the Anindilyakwa Land Council.

British Geological Survey (2023). Weathering: Discovering Geology – Geological processes. Available at: <u>https://www.bgs.ac.uk/discovering-geology/geological-</u>

processes/weathering/#:~:text=Discovering%20Geology%20%E2%80%94%20Geological%20processes,be%20biologic al%2C%20chemical%20or%20physical.

Brooks, M. L., D'Antonio, C. M., Richardson D. M., Grace, J., B., Keeley, J. E., Ditomaso, M., Hobbs, R. J, PELLANT, M., and PYKE, D. (2004). Effects of Invasive Alien Plants on Fire Regimes. BioScience, Volume 54, Issue 7, July 2004, Pages 677-688, <u>https://doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2</u>.

Department of Environment, Water, Heritage, and the Arts (DEWHA) (2008). The north marine bioregional plan bioregional profile. Canberra: DEWHA. Available from: <u>www.parksaustralia.gov.au</u>. Accessed 14 October 2022.

Ecological Management Services (EMS) (2023). Winchelsea Island (Akwamburrkba) Manganese Mine Project Terrestrial Ecology Technical Report. Report prepared for Winchelsea Mining Pty Ltd.

Ferns, L.W. (2016). Coral communities in extreme environmental conditions in Northern Territory, Australia. Northern Territory Naturalist, 27, pg. 84-96.

International Erosion Control Association (IECA) Australasia (2008). Best Practice Erosion & Sediment Control. Available at: <u>https://www.austieca.com.au/publications/best-practice-erosion-and-sediment-control-bpesc-document</u>.

Kenyon R.A., Conacher C.A., and Poiner, I.R. (1997). Seasonal growth and reproduction of Enhalus acoroides (L.f.) Royle in a shallow bay in the western Gulf of Carpentaria, Australia. Australian Journal of Marine and Freshwater Research, 48, pg. 335-345.

Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12, 519-539. <u>http://dx.doi.org/10.1002/ldr.472</u>.

Northern Territory Environment Protection Authority (NT EPA) (2017). Northern Territory Contaminated Land Guideline. Available at: <u>https://ntepa.nt.gov.au/__data/assets/pdf_file/0020/434540/guideline_contaminated_land.pdf</u>.

Northern Territory Environment Protection Authority (NT EPA) (2021). Preparing and environmental impact statement (EIS) – Environmental impact assessment guidance for proponents. Version 1.0 (dated 26 February 2021). NT EPA Darwin

Northern Territory Environmental Protection Authority (NT EPA) (2022). NT EPA Environmental factors and objectives - Environmental impact assessment: General technical guidance. NT Government. Available at: <u>https://ntepa.nt.gov.au/__data/assets/pdf_file/0020/804602/guide-ntepa-environmental-factors-objectives.pdf</u>.

Northern Territory Government (NTG) (2018). Rum Jungle mine. Department of Industry, tourism and Trade. Available at: <u>https://industry.nt.gov.au/industries/mining-and-energy/legacy-mine-rehabilitation/rum-jungle</u>.

Northern Territory Government (NTG) (2021). Land clearing guidelines: Northern Territory Planning Scheme. Available at: <u>https://nt.gov.au/__data/assets/pdf_file/0007/236815/land-clearing-guidelines.pdf</u>.

Seashore Engineering (2023). Winchelsea Island Manganese Mine Project - Coastal Processes Assessment, Western Australia, Perth.

SHIM Consulting. (2018). Report on the Cultural Heritage of Akwamburrkba (Winchelsea Island). Prepared for Anindilyakwa Land Council.

Territory Groundwater Services (TGS) (2023). Winchelsea Island (Akwamburrkba) Manganese Mine Project, Groundwater Assessment. Report prepared for Winchelsea Mining Pty Ltd.

R. Thackway and I. D. Cresswell (1995) (Eds). An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. Australian Nature Conservation Agency, Canberra.

Wolchover, N. (2012). How Far Can the Human Eye See?. Live Science, May 2012, viewed 12 April 2023. Available at: <u>http://www.livescience.com/33895-human-eye.html</u>.

15.4.2 Section 9.2 (Terrestrial Environmental Quality)

Australia and New Zealand Government (ANZG) (2018). Guidelines for Fresh and Marine Water Quality (95%). Australia Government. Available at: <u>https://www.waterquality.gov.au/anz-guidelines</u>.

Australian Government (2016). Tailings Managements: Leading Practice Sustainable Development Program for the Mining Industry. Available at: <u>https://www.industry.gov.au/sites/default/files/2019-04/lpsdp-tailings-management-handbook-english.pdf</u>.

Australian Soil Resource Information System (ASRIS) (2014). Atlas of Australian Soils. CSIRO. Australian Government. Available at: <u>https://www.asris.csiro.au/themes/Atlas.html</u>.

Bolton, R. B., Pracejus, B. and Frakes, A. L. (1988). Nature and development of supergene manganese deposits, Groote Eylandt, Northern Territory, Australia. Science Direct, 4 (1-2), pg. 71-98.

CDM Smith (2023). Winchelsea Manganese Mine – Terrestrial Quality Sampling 2022. Report prepared for Winchelsea Mining Pty Ltd. April 2023.

Department of Environment, Parks and Water Security (DEPWS) (2021). Land clearing guidelines. Northern TerritoryPlanningScheme.NorthernTerritoryGovernment.Availablehttps://nt.gov.au/data/assets/pdf file/0007/236815/land-clearing-guidelines.pdf.

Department of Environment, Parks and Water Security (2023). NR Maps Natural Resource Maps. Accessed May 2023. <u>https://nrmaps.nt.gov.au/</u>.

Department of Land Resource Management (DLRM) (2021). Soils of the Northern Territory – Factsheet. NT Government. Available at: <u>https://denr.nt.gov.au/__data/assets/pdf_file/0016/261061/soils-of-the-nt-factsheet.pdf</u>.

Ferenczi, P. (2001). Iron ore, Manganese and Bauxite Deposits of the Northern Territory Report 13. NT Government Department of Business Industry and Resource Development, Darwin.

International Erosion Control Association (IECA) Australasia (2008). Best Practice Erosion & Sediment Control. Available at: <u>https://www.austieca.com.au/publications/best-practice-erosion-and-sediment-control-bpesc-document</u>.

Joint Ore Reserve Committee (JORC) (2012). Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The JORC Code 2012 Edition. Available at: <u>https://www.jorc.org/docs/JORC_code_2012.pdf</u>.

Lal, R. (2001). Soil degradation by erosion. Land Degradation and Development, 12, 519-539. <u>http://dx.doi.org/10.1002/ldr.472</u>.

Land & Water Consulting (LWC) (2023). Preliminary Geochemical Assessment. Winchelsea Manganese Mine, Winchelsea Island, Northern Territory. Report prepared for CDM Smith Australia on behalf of Winchelsea Mining. June 2023.

Nation Environment Protection Measure (NEPM) (2013). Guideline on Investigation Levels for Soil and Groundwater. National Environment Protection Council.

Northern Territory (NT) Government (2018). Rum Jungle mine. Department of Industry, tourism and Trade. Available at: <u>https://industry.nt.gov.au/industries/mining-and-energy/legacy-mine-rehabilitation/rum-jungle</u>.

Northern Territory Environmental Protection Authority (NT EPA) (2021). Terms of Reference for an EIS. Winchelsea Island Manganese Mine Project, Winchelsea Mining Pty Ltd, East Arnhem Local Government Area. November 2021.

R. Thackway and I. D. Cresswell (1995) (Eds). An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. Australian Nature Conservation Agency, Canberra.

Roy, S. J. (1981). Manganese Deposits. Academic Press, London.

Territory Groundwater Services (TGS) (2023). Winchelsea Island (Akwamburrkba) Manganese Mine Project, Groundwater Assessment. Report prepared for Winchelsea Mining Pty Ltd.

WANT Geotechnics (WANT) (2023). Report on the Investigation and Testing of a Potential Sandstone Resource Winchelsea Island, Northern Territory. Report prepared for Sitzler, February 2023.

Wantzen, K. and Mol, J. (2013). Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems. Agriculture 2013, 3, 660-683; doi:10.3390/agriculture3040660. Available at: <u>https://www.mdpi.com/2077-0472/3/4/660/pdf-vor</u>.

WRM Water and Environment (WRM) (2023). Winchelsea Island (Akwamburkba) Manganese Mine Project - Erosion and Sediment Control Standard. Report prepared for Winchelsea Mining Pty Ltd.

Xenith (2020) Winchelsea Manganese Project, Technical Program Mineral Lease Application. Prepared for Winchelsea Mining Pty Ltd.

15.4.3 Section 9.3 (Terrestrial Ecosystems)

Animalia (2023). Arafura fantail. https://animalia.bio/arafura-fantail.

Anindilyakwa Land Council (ALC) (2022). Quarantine and Biosecurity. Available at: <u>https://anindilyakwa.com.au/land-and-sea/quarantine-and-biosecurity/</u>.

Atlas of Living Australia (ALA) (2023). Flora & Fauna Atlas search of Winchelsea Island. 5 km search at central point (UTM Zone 53 662984.3, 8479519.5). Accessed February 2023.

Australia and New Zealand Government (ANZG) (2018). Guidelines for Fresh and Marine Water Quality (95%). Australia Government. Available at: <u>https://www.waterquality.gov.au/anz-guidelines</u>.

Australian Faunal Directory (AFD) (2010). Australian Faunal Directory. Available from: <u>https://biodiversity.org.au/afd/home</u>.

Australian Government (2016). Mine Rehabilitation: Leading Practice Sustainable Development Program for the Mining Industry. Available at: <u>https://www.industry.gov.au/sites/default/files/2019-04/lpsdp-mine-rehabilitation-handbook-english.pdf</u>.

Barber-Meyer, SM (2007). Photo pollution impacts on the nocturnal behaviour of the sugar glider (*Petaurus breviceps*). Pacific Conservation Biology, vol. 13, pp. 171-176.

Barden, P.A. (2015). Yiningmunbalpa, Yellilya and Wurramalkwa: A Review and Inventory of the Bats of Groote Eylandt and the Anindilyakwa Indigenous Protected Area. MSc Environmental Management Research Project, Charles Sturt University.

Birdlife Australia (2022). Find a Bird. Available at: https://www.birdlife.org.au/all-about-birds/australias-birds/find-a-bird/Breed, B. and Ford, F. 2007 *Native Mice and Rats*. CSIRO Publishing, Collingwood Victoria.

Breed and Ford 2007 Brush-tail Rabbit-rat - Breed, W.G. & Ford, F. (2007) Native mice and rats. CSIRO Publishing, Collingwood, 196 pp

Brooks, M. L., D'Antonio, C. M., Richardson D. M., Grace, J., B., Keeley, J. E., Ditomaso, M., Hobbs, R. J, PELLANT, M., and PYKE, D. (2014). Effects of Invasive Alien Plants on Fire Regimes. BioScience, Volume 54, Issue 7, July 2004, Pages 677–688, <u>https://doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2</u>.

Bureau of Meteorology (BoM) (2023). *Groundwater Dependent Ecosystems Atlas*. Available at: <u>http://www.bom.gov.au/water/groundwater/gde/map.shtml</u> (Accessed on 8 August 2023).

Chaston, K and Doley, D. (2006). Mineral particulates and vegetation: Effects of coal dust, overburden and flyash on light interception and leaf temperature. Clean Air and Environmental Quality, vol. 40 1, pp. 40-44.

Christian et al., 2003 Northern Blue-tongue Lizard - Christian, K.A., Webb, J.K. and Schultz, T.J., 2003. Energetics of bluetongue lizards (*Tiliqua scincoides*) in a seasonal tropical environment. Oecologia, 136(4), pp.515-523

Christidis, L., (1995). Handbook of Australian, New Zealand and Antarctic Birds. Volume 2, Raptors to Lapwings.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2023). Climate Change in Australia: Climate information, projections, tools and data. Available at: <u>https://www.climatechangeinaustralia.gov.au/en/projections-tools/</u>. Accessed 21 April 2023.

Cogger 2014 Northern Blue-tongue Lizard - Cogger HG. 2014. Genus Tiliqua. In: Reptiles & amphibians of Australia. 7th ed. Collingwood (VIC, Australia): CSIRO Publishing; p. 686–691.

Creuzer, J, Hargiss, C, Norland JE, DeSutter, T, Casey, FX, Dekeyser, E & Ell, M (2016). Does Increased Road Dust Due to Energy Development Impact Wetlands in the Bakken Region?, Water, Air and Soil Pollution, DOI: 10.1007/s11270-015-2739-1.

Department of Agriculture, Water and the Environment (DAWE) (2021). Consultation Document on Listing Eligibility and Conservation Actions - Tiliqua scincoides intermedia (Northern Blue-tongue Lizard). Available at: <u>https://www.dcceew.gov.au/sites/default/files/env/consultations/6f4e3fb7-844e-4e3e-8043-6c965a58cff6/files/consultation-document-t-scincoides-intermedia.pdf</u>.

Department of Agriculture, Water and the Environment (DAWE) (2021). Light pollution – Effects of Wildlife. https://www.environment.gov.au/biodiversity/conservation/light-pollution.

Department of Climate Change, Environment, Energy and Water (DCCEEW) (2022). Species Profile and Threats Database, Department of the Environment, Canberra. Available at: <u>http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl</u>.

Department of Climate Change, Environment, Energy and Water (DCCEEW) (2023). National Light Pollution Guidelines for Wildlife. Australian Government. Available at: <u>https://www.dcceew.gov.au/sites/default/files/documents/national-light-pollution-guidelines-wildlife.pdf</u>.

Department of Environment (DOE) (2015a). Wildlife Conservation Plan for Migratory Shorebirds. Commonwealth of Australia, Canberra.

Department of Environment (DOE) (2015c). Industry guidelines for avoiding, assessing and mitigating impacts on EPBC Act listed migratory shorebird species. Commonwealth of Australia, Canberra.

Department of the Environment (DOE) (2016). EPBC Act referral guideline for the endangered northern quoll *Dasyurus hallucatus*. Commonwealth of Australia, Canberra.

Department of Environment, Parks and Water Security (DEPWS) (2021a). Threatened species of the Northern Territory. Northern Territory Government (NTG). Available at: <u>https://nt.gov.au/environment/animals/threatened-animals</u>.

Department of Environment, Parks and Water Security (DEPWS) (2021b). Land clearing guidelines. Northern TerritoryPlanningScheme.NorthernTerritoryGovernment.Availablehttps://nt.gov.au/__data/assets/pdf_file/0007/236815/land-clearing-guidelines.pdf.

Department of Environment, Parks and Water Security (DEPWS) (2023a). Groundwater Dependant Ecosystems Atlas. Northern Territory Government, collated by the Bureau of Meteorology.

Department of Environment, Parks and Water Security (DEPWS) (2023b). NR Maps. Northern Territory Government.

Department of Environment, Water, Heritage and the Arts (DEWHA) (2010a). Survey Guidelines for Australia's Threatened Bats. EPBC Act Survey Guidelines. Commonwealth of Australia, Canberra.

Department of Environment, Water, Heritage and the Arts (DEWHA) (2010b). Survey Guidelines for Australia's Threatened Birds. EPBC Act Survey Guidelines. Commonwealth of Australia, Canberra.

Department of Sustainability, Environment, Water, Population and Communities (DSEWPC) (2011). Survey guidelines for Australia's threatened mammals. Commonwealth of Australia.

Diete, R. L., Meek, P. D., Dickman, C. R., and Leung, L. K.-P. 2014. Burrowing behaviour of the northern hopping-mouse (*Notomys aquilo*): field observations. Australian Mammalogy 36: 242–246.

Diete, R.L. 2015. Sampling methodology for the northern hopping-mouse: recommendations for GEMCO preclearance surveys. Report prepared for South32/GEMCO.

Diete, R.L., Meek, P.D., Dickman, C.R. & Leung, L.K.-P. 2016. Ecology and conservation of the northern hopping-mouse (*Notomys aquilo*). *Australian Journal of Zoology*, 64: 21-32.

Ecological Management Services (EMS) (2019). Winchelsea (Akwamburrkba) Island Terrestrial Ecology Survey, EL27521. Final Report. Report prepared for Winchelsea Mining.

Ecological Management Services (EMS) (2023a). Winchelsea Island (Akwamburrkba) Manganese Mine Project Terrestrial Ecology Technical Report. Report prepared for Winchelsea Mining Pty Ltd.

Ecological Management Services (EMS) (2023b). Winchelsea (Akwamburrkba) Island Migratory Shorebirds, Coastal Marine and Wetland Birds 2018-2022 Final Report. Report prepared for Winchelsea Mining Pty Ltd.

Ecological Management Services (EMS) (2023c). Winchelsea (Akwamburrkba) Island Marine Turtle Nesting 2018-2022 Final Report. Report prepared for Winchelsea Mining Pty Ltd.

Farmer, A. M. (1993). The effects of dust on vegetation - A review. Environmental Pollution. 79: 63-75. Available at: <u>https://www.resolutionmineeis.us/sites/default/files/references/farmer-dust-effects-1993.pdf</u>.

Firth, R.S., Woinarski, J.C. and Noske, R.A. (2006). Home range and den characteristics of the brush-tailed rabbit-rat (Conilurus penicillatus) in the monsoonal tropics of the Northern Territory, Australia. Wildlife Research 33(5): 397-407.

Gillespie, G. R., Brennan, K., Gentles, T., Hill, B., Low Choy, J., Mahney, T., Stevens, A., and Stokeld, D. (2015). A guide for the use of remote cameras for wildlife survey in northern Australia. National Environmental Research Program, Northern Australia Hub. Charles Darwin University, Casuarina, NT.

Heiniger, J., Cameron, S.F., Madsen, T., Niehaus, A.C., Wilson, R.S. (2020). Demography and spatial requirements of the endangered northern quoll on Groote Eylandt. *Wildlife Research*, 47(3): 224-38.

Higgins, P.J., Peter, J.M. & Cowling, S.J. (2006). Handbook of Australian, New Zealand and Antarctic Birds. In: *Part A. Boatbill to Larks*. Volume 7. Melbourne, Victoria: Oxford University Press.

Hourigan, C. (2011). Targeted species survey guidelines: Northern leaf-nosed bat *Hipposideros stenotis*. Queensland Herbarium, Department of Environment and Science, Brisbane.

International Maritime Organization (IMO) (2011). Guidelines for the Control and Management of Ships Biofouling to Minimise the Transfer of Invasive Aquatic Species. Adopted under Resolution MEPC.207(62) on 15 July 2011. Available at:

https://www.cdn.imo.org/localresources/en/OurWork/Environment/Documents/RESOLUTION%20MEPC.207[62].pdf.

International Union for Conservation of Nature and Natural Resources (IUCN) (2023). The IUCN Red List of Threatened Species. International Union for Conservation of Nature and Natural Resources. Available at: <u>https://www.iucnredlist.org/</u>. Accessed 18 April 2023.

Longcore, T and Rich, C (2004). Ecological light pollution. Frontiers in Ecology and Environment, vol. 2, pp. 191-198.

Liddle, D.T., Boggs, D., Hutley, L., Yin Foo, D., Boggs, G., Pearson, D., Cook, P.G., Elliott, L.P., Jungle, B. and Creek, B., (2008). Biophysical modelling of water quality in a Darwin rural area groundwater dependent ecosystem. Northern Territory Government, Darwin.

Matsuki, M, Gardener, MR, Smith, A, Howard, RK & Gove, A (2016). Impacts of dust on plant health, survivorship and plant communities in semi-arid environments. Austral Ecology, vol. 41, pp. 417-427.

Mckay, J., Griffiths, A.D. and Crase, B., (2009). Distribution and Habitat Use by 'Hemidactylus frenatus' Dumeril and Bibron (Gekkonidae) in the Northern Territory. Beagle: Records of the Museums and Art Galleries of the Northern Territory, 25, pp.107-112.

Mahney, T., McKay, L., Liddle, D., Fisher, A., Westaway, J., Fegan, M. and Dally, G. (2009). Bickerton, Winchelsea and south east Groote Eylandt Wildlife Survey, September 2009. Biodiversity Conservation Division, Department of Natural Resources Environment the Arts and Sport.

North Australia & Rangelands Fire Information (NAFI) (2023). Available at: <u>https://firenorth.org.au/nafi3/</u>. Accessed 17 July 2023.

Northern Territory Environmental Protection Authority (NT EPA) (2021). Terms of Reference for an EIS. Winchelsea Island Manganese Mine Project, Winchelsea Mining Pty Ltd, East Arnhem Local Government Area. November 2021.

Noske, R.A. and Johnstone, R.E. (2018). Nest, eggs and breeding season of the Arafura Fantail (*Rhipidura dryas*). Northern Territory Naturalist 28: 12–22.

Oakwood, M. (2008). Northern quoll *Dasyurus hallucatus*. In: Van Dyck, S. & R. Strahan, eds. *The Mammals of Australia (3rd ed)*. Page(s) 57-59. Reed New Holland, Sydney, NSW.

Parris, K., and McCauley, R., (2016). Noise pollution and the environment. Australian Academy of Science <u>https://www.science.org.au/curious/earth-environment/noise-pollution-and-environment</u>.

Perry, G., Buchanan, B. & Fisher, R., Salmon, M. & Wise, S. (2008). Effects of artificial night lighting on amphibians and reptiles in urban environments.

Price-Rees et al., 2013 Northern Blue-tongue Lizard - Price-Rees, S.J., Brown, G.P. & Shine, R. Habitat selection by bluetongue lizards (Tiliqua, Scincidae) in tropical Australia: a study using GPS telemetry. Anim Biotelemetry 1, 7 (2013).

Radle, AL (2007). Effect of Noise on Wildlife: A Literature Review. Geography.

Rich, C and Longcore, (eds.) T (2006). Ecological consequences of artificial night lighting, Island Press, Washington.

Schodde, R. and Mason, I.J. (1999). The Directory of Australian Birds: Passerines. Melbourne, Victoria: CSIRO.

Shea 1998 Northern Blue-tongue Lizard - Shea, G (1998). Australian bluetongues. Nature Australia 26, 31-39.

Shine 2017 Northern Blue-tongue Lizard - Shine, R (2017). Public nomination of Tiliqua scincoides intermedia for Endangered listing under the EPBC Act.

Specialised Zoological and Madani, G. (2023). A comprehensive field survey for bats on Winchelsea Island, Northern Territory. Report prepared Ecological Management Services Pty Ltd, project reference SZ624.

Taylor, S. (2016). Anindilyakwa Indigenous Protected Area Plan of Management 2016. Anindilyakwa Land Council, 2016.

Territory Groundwater Services (TGS) (2023). Winchelsea Island (Akwamburrkba) Manganese Prospect Groundwater Assessment. Report prepared for Winchelsea Mining Company.

Threatened Species Scientific Committee (TSSC) (2005). The biological effects, including lethal toxic ingestion, caused by Cane Toads (Bufo marinus). Available at: <u>https://www.dcceew.gov.au/environment/biodiversity/threatened/key-threatening-processes/biological-effects-cane-toads</u>.

Threatened Species Scientific Committee (TSSC) (2016a). Conservation Advice *Conilurus penicillatus* brush-tailed rabbit-rat. Commonwealth of Australia, Canberra.

Threatened Species Scientific Committee (TSSC) (2016b). Conservation Advice *Macroderma gigas* ghost bat. Commonwealth of Australia, Canberra.

Threatened Species Scientific Committee (TSSC) (2016c). Conservation Advice *Saccolaimus saccolaimus nudicluniatus* bare-rumped sheathtail bat. Commonwealth of Australia, Canberra.

Threatened Species Scientific Committee (TSSC) (2021a). Conservation Advice *Notomys aquilo* Northern Hopping-mouse. Commonwealth of Australia, Canberra.

Threatened Species Scientific Committee (TSSC) (2021b). Conservation Advice *Trichosurus vulpecula arnhemensis* Northern Brushtail Possum. Canberra: Department of Agriculture, Water and the Environment. Available from: <u>http://www.environment.gov.au/biodiversity/threatened/species/pubs/83091-conservation-advice-11052021.pdf</u>.

Ujvari, B., Oakwood, M. and Madsen, T. (2013). Queensland northern quolls are not immune to cane toad toxin. *Wildlife Research*, 40(3):228-231.

van Dyck, S., Gynther, I., and Baker, A. (eds) (2013). Field Companion to the Mammals of Australia. New Holland Publishers.

Ward, S., Woinarski, J., Griffiths, T. and McKay, L. (2012). Threatened Species of the Northern Territory. Mertens' Water Monitor *Varanus mertensi*. NT Government Threatened Species Information Sheet.

Watson, D. M. (2003). The 'standardized search': an improved way to conduct bird surveys. Austral Ecology 28: 515-525.

Watson, D. M. (2004). Comparative evaluation of new approaches to survey birds. Wildlife Research 31: 1-11.

Watson, D. M. (2010). Optimizing inventories of diverse sites: insights from Barro Colorado Island birds. Methods in Ecology and Evolution 1: 280-291.

Woinarski, J.C.Z., Oakwood, M., Winter, J., Burnett, S., Milne, D., Foster, P., Myles, H., and Holmes, B. (2008). Surviving the toads: patterns of persistence of the northern quoll *Dasyurus hallucatus* in Queensland. Report prepared for the Natural Heritage Trust Strategic Reserve Program.

Woinarski, J., Russell-Smith, J., Andersen, A. & Brennan, K., (2009). Fire management and biodiversity of the western Arnhem Land Plateau. In: Culture, Ecology and Economy of Fire Management in North Australian Savannas: Rekindling the Wurrk Tradition' (Eds J Russell-Smith, PJ Whitehead, PM Cooke). Collingwood: CSIRO Publishing.

Young, S. and Hill, B. (2012). Threatened species of the Northern Territory: Pale Field-rat Rattus tunneyi. DENR, Darwin. <u>https://nt.gov.au/__data/assets/pdf_file/0020/205517/pale-field-rat.pdf</u>.

15.4.4 Section. 9.4 (Hydrological Processes)

Australian and New Zealand Environment and Conservation Council (ANZECC) & Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000 Zinc in Freshwater. Available at: <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants/zinc-</u>2000. Accessed 8 March 2023.

Australian & New Zealand Guidelines For Fresh & Marine Water Quality (2018). Default Guideline Values. Available at: <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default</u>. Accessed 10 February 2023.

Boughton, (2004) 'The Australian water balance model, Environmental Modelling and Software', vol. 19, pp. 943-956.

Bureau of Meteorology (BOM) (2023a). Southern hemisphere Tropical Data portal. Available at: <u>http://www.bom.gov.au/cyclone/tropical-cyclone-knowledge-centre/history/tracks/</u>. Access on 1 August2023.

Bureau of Meteorology (BOM) (2023b). *Groundwater Dependent Ecosystems Atlas*. Available at: <u>http://www.bom.gov.au/water/groundwater/gde/</u>.

CDM Smith (2020). Referral Document for Winchelsea Island Manganese Mine Project. Available at: <u>https://ntepa.nt.gov.au/your-business/public-registers/environmental-impact-assessments-register/assessments-in-progress-register/winchelsea-island-manganese-mine-project</u>. Accessed 26 May 2023.

CDM Smith (2023) Winchelsea Island (Akwamburkba) Manganese Mine: Numerical Groundwater Modelling Report. Prepared for Winchelsea Mining.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2023). Climate Change in Australia: Climate information, projections, tools and data. Available at: <u>https://www.climatechangeinaustralia.gov.au/en/projections-tools/</u>. Accessed 21 April 2023.

CSIRO (2016) *Proposed methods report for Darwin Catchments*. A report from the CSIRO Northern Australia water Resource Assessment to the Government of Australia, CSIRO.

Department of Environment and Natural Resources (DENR) (2020). Northern Territory Offsets Principles. Northern Territory Government, DENR – Flora and Fauna Division.

Department of Environment, Parks and Water Security (DEPWS) (2021). Land clearing guidelines. Northern Territory Government. TRM number LRM2021/0077~0002.

Falkland, A. (1991) Hydrology and Water Resources of Small Islands: A Practical Guide. UNESCO.

Geoscience Australia (2023). *Seawater Intrusion*. Available at: <u>https://www.ga.gov.au/scientific-topics/water/groundwater/understanding-groundwater-resources/seawater-intrusion</u>. Accessed 1 June 2023.

Hutley, L.B., O'Grady, A.P., Eamus, D. (2000) *Evapotranspiration from Eucalypt Open-Forest Savanna of Northern Australia.* Functional Ecology. Vol.14, No.2.

Koppen, W. (1936) The geographic system of climates. Hanbuch der Klimatologie, Vol.1. Berlin: Borntaeger.

Liddle, D.T., Boggs, D., Hutley, L., Yin Foo, D., Boggs, G., Pearson, D., Cook, P.G., and Elliott, L.P. (2008) Biophysical modelling of water quality in a Darwin rural area groundwater dependent ecosystem. Report of the NT NRMB, NHT Project 2005/133. NRETAS.

NESP Earth Systems and Climate Change Hub (2020), *Climate change in the Northern Territory: state of the science and climate change impacts*. NESP ESCC Hub, Melbourne.

Northern Territory Government (1998). Northern Territory Government gazette : no. G9. Updated 25 March 1998 Government Gazette G211. Updated 27 May 1998 Government Gazette G20. Available at: <u>https://hdl.handle.net/10070/684392</u>. Accessed 22 May 2023.

Northern Territory Government (NTG) (2022). *Northern Territory Declared Water Control Districts*. Updated October 2022. Available at: <u>https://www.ntlis.nt.gov.au/mpds/get_file?file_id=4072</u>. Accessed 22 May 2023

Northern Territory Government (NTG) (2023). *NT Water Allocation Planning Areas. Updated April 2023*. Available at: <u>https://www.ntlis.nt.gov.au/mpds/get_file?file_id=6262</u>. Accessed 22 May 2023.

Northern Territory Government (NTG) (2023). *Beneficial Water Use*. Available at <u>https://nt.gov.au/environment/water/management-security/water-allocation/beneficial-water-use</u>. Accessed 22 May 2023

Prowse, G., Zaar, U., Tickell, S., Matthews, I., (1999) Water resources of East Arnhem Land. Publication of the Northern Territory Department of Lands, Planning and Environment. NRD.

Queensland Department of Environment and Science (2022). *SILO - Australian climate data from 1889 to yesterday*. Available at: <u>https://www.longpaddock.qld.gov.au/silo/</u>.

Russell-Smith, J. (1991) Classification, species richness, and environmental relations of Monsoon Rainforest in Northern Australia. Journal of Vegetation Science 2, 259-278.

Smith, M., Harper, B., Mason, L., Schwartz, R. and Acworth, C (2013). Gulf of Carpentaria Storm Tide and Inundation Study.Availableat:<u>http://www.systemsengineeringaustralia.com.au/download/Smith%20et%20al.-</u><u>%20GulfOfCarpentariaStormTide.pdf</u>. Accessed 26 May 2023.

Territory Groundwater Services Pty Ltd (TGS) (2022) Winchelsea Island (Akwamburkba), Manganese Prospect, Groundwater Assessment. 18 November 2022. Report prepared by Maria Woodgate (TGS Consulting Hydrogeologist) for GHAC/ AAAC/Winchelsea Mining Pty Ltd.

Territory Groundwater Services, Pty Ltd (TGS) (2023) *Winchelsea Island (Akwamburrkba) Manganese Mine Project, Groundwater Assessment*. Prepared for Winchelsea Mining 12 April 2023. Note this is an Appendix.

United States Geological Survey (USGS) (2019). Saltwater Intrusion. Updated 2 March 219. Available at: <u>https://www.usgs.gov/mission-areas/water-resources/science/saltwater-intrusion</u>. Accessed 1 June 2023.

WRM (2023). Winchelsea Island (Akwamburkba) Manganese Mine Project Surface Water Assessment. Prepared for Winchelsea Mining Pty Ltd. 23 June 2023. Note this is an Appendix.

Xenith (2020) Winchelsea Manganese Project, Technical Program Mineral Lease Application. Prepared for Winchelsea Mining Pty Ltd.

15.4.5 Section 9.5 (Inland Water Environmental Quality)

Abarca, E.,C,J., Sánchez-Vila, X. and Voss, C.I. (2007). Quasi-horizontal circulation cells in 3D seawater intrusion. Journal of Hydrology, 339(3-4), pp.118-129.

ADG Engineers (ADG) (2018). Winchelsea Island Northern Territory Flood Constraints Analysis. Report prepared for Winchelsea Mining. November 2018.

ANZECC & ARMCANZ (2000a). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy. October 2000.

ANZECC & ARMCANZ (2000b). Zinc in Freshwater. Available at: <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants/zinc-2000</u>. Accessed 8 March 2023.

Australian Government (2016). Tailings Managements: Leading Practice Sustainable Development Program for the Mining Industry. Available at: <u>https://www.industry.gov.au/sites/default/files/2019-04/lpsdp-tailings-management-handbook-english.pdf</u>.

Australia and New Zealand Government (ANZG) (2018). Guidelines for Fresh and Marine Water Quality (95%). Australia Government. Available at: <u>https://www.waterquality.gov.au/anz-guidelines</u>.

CDM Smith (2023). Winchelsea Manganese Mine – Terrestrial Quality Sampling 2022. Report prepared for Winchelsea Mining Pty Ltd. April 2023.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2023). Climate Change in Australia: Climate information, projections, tools and data. Canberra, Australia. Viewed 21 April 2023. <u>https://www.climatechangeinaustralia.gov.au/en/projections-tools/.</u>

Department of Environment, Parks and Water Security (DEPWS) (2021a). Beneficial use declarations. Northern Territory Government. Available at: <u>https://nt.gov.au/environment/water/management-security/water-allocation/beneficial-water-use</u>.

Department of Environment, Parks and Water Security (DEPWS) (2021b). Land clearing guidelines. Northern TerritoryPlanningScheme.NorthernTerritoryGovernment.Availablehttps://nt.gov.au/__data/assets/pdf_file/0007/236815/land-clearing-guidelines.pdf.

Gingerich, S.B., Voss, C.I. and Johnson, A.G., (2017). Seawater-flooding events and impact on freshwater lenses of lowlying islands: Controlling factors, basic management and mitigation. Journal of Hydrology, 551, pp.676-688.

International Erosion Control Association (IECA) Australasia (2008). Best Practice Erosion & Sediment Control. Available at: <u>https://www.austieca.com.au/publications/best-practice-erosion-and-sediment-control-bpesc-document</u>.

Jeffrey, S.J., Carter, J.O., Moodie, K.M and Beswick, A.R (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data', Environmental Modelling and Software. Vol 16/4, pp 309-330, 2001.

National Environmental Science Program (2020). Earth Systems and Climate Change Hub - Climate change in the Northern Territory. State of the Science and Climate Change Impacts. September 2020.

Northern Territory Environment Protection Authority (NT EPA) (2013). Guidelines on Conceptual Site Models. NT Government. Available at: <u>https://ntepa.nt.gov.au/_data/assets/pdf_file/0007/904327/draft_guidelines_conceptual_site_models.pdf</u>.

Northern Territory Environmental Protection Authority (NT EPA) (2021). Terms of Reference for an EIS. Winchelsea Island Manganese Mine Project, Winchelsea Mining Pty Ltd, East Arnhem Local Government Area. November 2021.

Territory Groundwater Services (TGS) (2023). Winchelsea Island (Akwamburrkba) Manganese Mine Project, Groundwater Assessment. Report prepared for Winchelsea Mining. April 2023.

Werner, A.D., Bakker, M., Post, V.E., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T. and Barry, D.A. (2013). Seawater intrusion processes, investigation and management: recent advances and future challenges. Advances in water resources, 51, pp.3-26.

WRM (2023). Winchelsea Island (Akwamburrkba) Manganese Mine Project Surface Water Assessment. Prepared for Winchelsea Mining Pty Ltd. 23 June 2023.

15.4.6 Section 9.6 (Aquatic Ecosystems)

Australia and New Zealand Environment and Conservation Council (ANZECC) (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. National Water Quality Management Strategy. October 2000.

Australia and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (ANZECC and ARMCANZ) (2000). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality – Volume 2*.

Australia and New Zealand Guidelines (ANZG) (2018). *Default Guideline Values*. Available at: <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default</u>. Accessed 10 February 2023.

Australian Government (2016). *Tailings Management: Leading Practice Sustainable Development Program for the Mining Industry*. Available at: <u>https://www.industry.gov.au/publications/leading-practice-handbooks-sustainable-mining/tailings-management</u>. Accessed 12 July 2023.

Bureau of Meteorology (BoM) (2023). *Groundwater Dependent Ecosystems Atlas*. Available at: <u>http://www.bom.gov.au/water/groundwater/gde/map.shtml</u>. Accessed on 8 August 2023.

Bilton, D.T., Freeland, J.R., and Okamura, B. (2001). *Dispersal in freshwater invertebrates*. Annual review of ecology and systematics, 32(1), pp.159-181.

Cameron, A. G. and Lemcke, B. (2008). *Para Grass*. Available at: <u>https://industry.nt.gov.au/ data/assets/pdf file/0006/233259/285.pdf</u>. Accessed on 13 July 2023.

Commonwealth Scientific and Industry Research Organisation (CSIRO) (2016). *Proposed methods report for Darwin Catchments*. A report from the CSIRO Northern Australia water Resource Assessment to the Government of Australia, CSIRO.

Department of Agriculture and Fisheries (DAF) (2020). *Invasive Plant: Para Grass Urochloa mutica*. Available at: <u>https://www.daf.qld.gov.au/__data/assets/pdf_file/0015/55302/para-grass.pdf</u>. Accessed 13 July 2023.

Department of Agriculture and Fisheries (DAF) (2022). Restrictive Invasive Plant: Hymenachne or olive hymenachneHymenachneamplexicaulisandhybrids.Availableat:https://www.daf.qld.gov.au/__data/assets/pdf_file/0007/77092/hymenachne.pdf.Accessed on 13 July 2023.

Department of Environment, Parks and Water Security (DEPWS) (2021). *Land Clearing Guidelines – Northern Territory Planning Scheme*. Available at: <u>https://nt.gov.au/property/land-clearing/freehold-land/apply-to-clear-freehold-land</u>. Accessed 12 July 2023.

Department of Environment and Natural Resources (DENR) (2020). *Northern Territory Offsets Principles*. Northern Territory Government, DENR – Flora and Fauna Division.

Department of Environment and Natural Resources (DENR) (2017). *Para Grass Urochloa mutica (formerly Bracharia mutica)*. Available at: <u>https://denr.nt.gov.au/__data/assets/pdf_file/0005/407435/Para-grass-weed-note-2017.pdf</u>. Accessed on 13 July 2023.

Ecological Management Services (EMS) (2023). *Winchelsea Mining Project Terrestrial Ecology Technical Report 2023*. Prepared for Winchelsea Mining Pty Ltd, May 2023.

Hutley, L.B., O'Grady, A.P., and Eamus, D. (2000). *Evapotranspiration from Eucalypt Open-Forest Savanna of Northern Australia*. Functional Ecology, 14(2).

Land and Water Consulting (LWC) (2023). Preliminary Geochemical Assessment – Winchelsea Manganese Mine, Winchelsea Island, Northern Territory. Prepared for CDM Smith, June 2023.

Liddle, D.T., Boggs, D., Hutley, L., Yin Foo, D., Boggs, G., Pearson, D., Cook, P.G., and Elliott, L.P. (2008). *Biophysical modelling of water quality in a Darwin rural area groundwater dependent ecosystem.* Report of the NT NRMB, NHT Project 2005/133. NRETAS.

National Environment Protection Measure (NEPM) (2013). *Guideline on Investigation Levels for Soil and Groundwater*. National Environment Protection Council.

Northern Territory Government (NTG) (2022). *Olive hymenachne*. Available at: <u>https://nt.gov.au/environment/weeds/weeds-in-the-nt/A-Z-list-of-weeds-in-the-NT/olive-hymenachne</u>. Accessed 13 July 2023.

Russell-Smith, J. (1991). Classification, species richness, and environmental relations of Monsoon Rainforest in Northern Australia. Journal of Vegetation Science 2, 259-278.

Territory Groundwater Services (TGS) (2023). *Winchelsea Island (Akwamburrkba) Manganese Mine Project, Groundwater Assessment*. Prepared for Winchelsea Mining Pty Ltd, April 2023.

15.4.7 Section 9.7 (Coastal Processes)

Ausenco (2023). Winchelsea Manganese FS - Feasibility Study Report: April 2023. Prepared for Xenith Consulting.

Bureau of Meterorology (BoM) (2022). Climate Summary Statistics: Groote Eylandt Airport, Site number 014518, Australian Government, <u>http://www.bom.gov.au/climate/averages/tables/cw_014518.shtml</u>.

Callaghan J (2011a). Known Tropical Cyclone Impacts in the Gulf of Carpentaria. Bureau of Meteorology, Queensland Regional Office, Brisbane, Australia.

CDM Smith, (2023). Winchelsea Island (Akwamburkba) Sediment Transport Modelling Report. Prepared for Winchelsea Mining Pty Ltd.

Cheng, NA, (1997). Simplified Settling Velocity Formula for Sediment Particles. Journal of Hydraulic Engineering, 123, pp 149-152.

Church JA & Forbes AMG (1983a). Circulation in the Gulf of Carpentaria. Direct observations of currents in the southeast corner of the Gulf of Carpentaria. Australian Journal of Marine and Freshwater Research, 34(1) 1 – 10.

Church JA & Forbes AMG (1983b). Circulation in the Gulf of Carpentaria. II. Residual currents and mean sea level. Australian Journal of Marine and Freshwater Research, 34(1), 11 – 22.

Drosdowsky, W (1996). Variability of the Australian Summer Monsoon at Darwin: 1957-1992. *Journal of Climate*, 9(1), 85-96.

Australian Government Department of the Environment, Water, Heritage and the Arts (DEWHA) (2007). Characterisation of the marine environment of the north marine region: outcomes of an expert workshop convened in Darwin., Northern Territory, 2-3 April 2007, DEWHA, Canberra. Available at: <u>http://www.environment.gov.au/resource/characterisation-marine-environment-north-marine-region-outcomes-expert-workshop-2-3-april.</u>

EcOz Environmental Consultants (2019). *Barge landing benthic impact assessment*. (Prepared for ADG Engineering Pty Ltd).

Gardline Marine Sciences Pty Ltd (2011). Groote Eylandt Marine Survey (Exploration Licence Area 27523). Report 8661/Geo(00).

Geoscience Australia (2009a). Australian Bathymetry and Topography Grid, June 2009 [Digital Datasets]. Record 2009/21, Australian Government, Geoscience Australia, Accessed November 2019.

Geoscience Australia (2009b). The Australian Coastal Smartline Geomorphic and Stability Map Version 1 [Digital Dataset]. Australian Government, Geoscience Australia, Accessed November 2019.

Geoscience Australia (2011). 1 second SRTM Digital Elevation Model (DEM) [Digital Datasets]. Accessed November 2019.

Geoscience Australia (2012). Surface Geology of Australia [Digital Dataset]. Australian Government,

Geoscience Australia (2019). In collaboration with state and territory geological survey agencies of Australia. Accessed November 2019.

Geoscience Australia (2013). National Coastal Geomorphology - Surface Geology Reclassified 1:250,000 [Digital Dataset]. Geoscience Australia, Record 2013/35. Accessed November 2019.

Haigh ID, Eliot M & Pattiaratchi C (2011). Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research, 116, C06025, doi:10.1029/2010JC006645.

Info-Pacific Environmental (2019). Benthic Survey of Potential Barge Landing Site at Winchelsea Island. Indo-Pacific Environmental Pty Ltd, Prepared for Winchelsea Mining Pty Ltd.

Kullgren, K., and Kim, K.-Y (2006). Physical mechanisms of the Australian summer monsoon: 1. Seasonal cycle, *Journal of Geophysical Research*, 111.

Maher, J., Cribb, H, and Beatty, A (2011). Monitoring for Marine Pests – Gove Harbour, Groote Eylandt and Melville Island. 2009-10 Report.

O2 Marine (2023). Winchelsea Island Manganese Mine Project – Subtidal Benthic Communities and Habitat. Prepared for CDM Smith Australia Pty Ltd.

Oliver E & Thompson K (2011). Sea level and circulation variability of the Gulf of Carpentaria: Influence of the Madden-Julian Oscillation and the adjacent deep ocean. *Journal of Geophysical Research*, 116 (C02019).

Seashore Engineering (2023). Winchelsea Island Manganese Mine Project Coastal Processes Assessment. Prepared for CDM Smith.

Sun C, Branson PM, Mills D (2020). Guideline on Dredge Plume Modelling for Environmental Impact Assessment. Prepared for the Dredging Science Node, Western Australian Marine Science Institution (WAMSI), Perth, Western Australia. Pp.73.

Tran, D and K Strom (2019). Floc Sizes and Resuspension Rates from Fresh Deposits: Influences of Suspended Sediment Concentration, Turbulence, and Deposition Time. Estuarine, Coastal and Shelf Science, 229:106397.

United States Army Corps of Engineers (USACE) (1978). Prediction and Control of Dredged Material Dispersion Around Dredging and Open-Water Pipeline Disposal Operations. Technical Report DS-78-13, U. S. Army Engineer Waterways Experiment Station, Environmental Laboratory, Vicksburg, Mississippi.

United States Army Corps of Engineers (USACE) (2015). Dredging and Dredged Material Management. Engineer Manual. EM 1110-2-5025.

van Rijn LC (1989). Handbook Sediment Transport by Currents and Waves. Report H461. Delft Hydraulics.

WANT Geotechnics (2023). Preliminary Geotechnical Investigation Report For the Proposed Winchelsea Mine, Little Paradise and Bartalumba Bay Marine Sites Groote Eylandt, Northern Territory. Prepared for Sitzler Project NTG20223096A Rev 0.

WANT Geotechnics (2019). *Geotechnical Investigation Report For the Second Visit Winchelsea Island Resource Planning Study*. Prepared for GHD Pty Ltd.

Winterwerp, JC (2002). On the Flocculation and Settling Velocity of Estuarine Mud. Continental Shelf Research, 22, pp 1339-1360.

Wolanski E (1993). Water circulation in the Gulf of Carpentaria. Journal of Marine Systems, 4(5), 401 – 420.

15.4.8 Section 9.8 (Marine Environment Quality)

Australian Institute of Marine Science (AIMS) (2013). Milner Bay Project: Marine Environmental Survey. Report prepared for GEMCO – BHP Billiton, March 2013.

Australia and New Zealand Environment and Conservation Council (ANZECC) (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy, October 2000.

Australia and New Zealand Guidelines (ANZG) (2018). Default Guideline Values. Available at: <u>https://www.waterquality.gov.au/anz-guidelines/guideline-values/default</u>. Accessed 10 February 2023.

Benthic Australia (2022). Benthic Australia Report. Prepared for CDM Smith, July 2022.

Cardno (2022). Sediment Transport Report – New Marine Facilities to Service Mandorah and Cox Peninsula. Prepared for the Department of Infrastructure, Planning, and Logistics, February 2022.

CDM Smith (2023a). Winchelsea Manganese Mine – Baseline Marine Quality Sampling 2022. Prepared for Winchelsea Mining Pty Ltd, March 2023.

CDM Smith (2023b). Winchelsea Island (Akwamburkba) Sediment Transport modelling Report. Prepared for Winchelsea Mining Pty Ltd, June 2023.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2023). Climate Change in Australia: Climate information, projections, tools and data. Available at: <u>https://www.climatechangeinaustralia.gov.au/en/projections-tools/</u>. Accessed 21 April 2023.

Department of Environment and Natural Resources (DENR) (2020). Northern Territory Offsets Principles. Northern Territory Government, DENR – Flora and Fauna Division.

Environmental Protection Authority (EPA) (2016). Technical Guidance – Environmental Impact Assessment of Marine Dredging Proposals. EPA, Western Australia.

Ferns, L.W (2016). Coral communities in extreme environmental conditions in Northern Territory, Australia. Northern Territory Naturalist, 27, pg. 84-96.

Fisher, R., Jones, R., and Bessell-Browne, P (2019). Effects of dredging related activities on water quality: Impacts on coral mortality and threshold development. WAMSI Dredging Science Node.

Garai, P., Banerjee, P., Mondal, P., and Saha, N (2021). Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. Journal of Clinical Toxicology, 11 (S18).

Groote Eylandt Mining Company (GEMCO) (2023). Bartalumba Bay reference site monitoring data. Provided to Winchelsea Mining, March 2023.

INPEX (2022). Appendix A: A Draft Maintenance Dredging and Spoil Disposal Management Plan (2023-2027). Prepared for the Icthys LNG Project, August 2022.

Kenyon R.A., Conacher C.A., and Poiner, I.R (1997). Seasonal growth and reproduction of Enhalus acoroides (L.f.) Royle in a shallow bay in the western Gulf of Carpentaria, Australia. Australian Journal of Marine and Freshwater Research, 48, pg. 335-345.

Land and Water Consulting (LWC) (2023). Preliminary Geochemical Assessment Winchelsea Manganese Mine, Winchelsea Island, Northern Territory. Prepared for CDM Smith Australia, June 2023.

Lavery, P., McMahon, K., Statton, J., Vanderklift, M., Strydom, A., and Kendrick, A (2019). Defining thresholds and indicators or primary producer response to dredging-related pressures. Synthesis report. WAMSI Dredging Science Node, Theme 5 Report, March 2019.

Maher, J., Cribb, H., and Beatty, A (2011). Monitoring for Marine Pests – Gove Harbour, Groote Eylandt and Melville Island: 2009-2010 Report. Department of Resources, Darwin, NT.

Marine Traffic (2023). Global Ship Tracking – Density Maps. Available at: <u>https://www.marinetraffic.com/en/ais/home/centerx:136.4/centery:-13.7/zoom:11</u>. Accessed 11 May 2023.

McKenzie, L.J (2003). Guidelines for the Rapid Assessment and Mapping of Tropical Seagrass Habitats. Department of Primary Industries, Queensland.

Northern Territory Government (NTG) (2020). Northern Territory Climate Change Response: Towards 2050. Available at: <u>https://climatechange.nt.gov.au/nt-climate-change-response/northern-territory-climate-change-response-towards-2050</u>. Accessed 9 June 2023.

O2 Marine (2023). Winchelsea Island Manganese Mine Project, Sediment Sampling and Analysis Plan Implementation Report, Report No: R220246

Ontario Ministry of the Environment (OMOE) (2011). Evaluating Construction Activities Impacting on Water Resources Part III B. Standards Development Branch Ontario Ministry of the Environment, February 1991, revised February 1994, updated January 2011.

Queensland Department of Environment and Science (QDES) (2018). Guidance on using Photosynthetically Active Radiation (PAR) as a method to measure light availability for aquatic photosynthetic organisms facing acute impacts. Environmental Protection (Water) Policy 2009 – Monitoring and Sampling Manual, version February 2018.

Seashore Engineering (2023). Winchelsea Island Marine Project Coastal Processes Assessment. Prepared for CDM Smith and Winchelsea Mining Pty Ltd, May 2023.

Sun, C., Branson, P.M., Mills, D. (2020). Guideline on Dredge Plume Modelling for Environmental Impact Assessment. Prepared WAMSI Dredging Science Node, Perth, Western Australia. pp.73.

Tsang, J.J., Udyawer, V., and Butler, E.C.V. (2019). Groote Eylandt Sediment Grain Size and Trace Elements. Report prepared for Anindilyakwa Land Council. Australian Institute of Marine Science.

URS (2011a). Marine Noise Assessment. Prepared for the Northern Territory Department of Lands and Planning, February 2011.

URS (2011b). Ichthys Gas Field Development Project – Summary of the Long-Term Water-Quality Program for Darwin Harbour. Prepared for INPEX Browse Ltd, March 2011.

WANT Geotechnics (2023). Preliminary Geotechnical Investigation Report for the Proposed Winchelsea Mine, Little Paradise and Bartalumba Bay Marine Sites Groote Eylandt, Northern Territory. Prepared for Sitzler, February 2023.

15.4.9 Section 9.9 (Marine Ecosystems)

Althaus, F., Hill, N., Edwards, L., and Ferrari, R. (2013). CATAMI Classification Scheme for scoring marine biota and substrata in underwater imagery – A pictorial guide to the Collaborative and Annotation Tools for Analysis of Marine Imagery and Video (CATAMI) classification scheme. Version 1. Available at: <u>https://catami.org/wp-content/uploads/sites/2/2023/03/CATAMI_Classification_Scheme_v1.4_Technical_document.pdf</u>. Accessed 29 June 2022.

Atlas of Living Australia (ALA) (2022). Flora and Fauna Atlas search of Winchelsea Island. 10 km search at central point (UTM 662782.65 m E, 8479585.74 m S). Available at: <u>https://www.ala.org.au/.</u> Accessed 14 October 2022.

Atlas of Living Australia (ALA) (2023). *Thalasseus bengalensis – Lesser Crested Tern*. Available at: <u>https://bie.ala.org.au/species/https://biodiversity.org.au/afd/taxa/ba921bc4-0962-4607-bda5-5a85a9c4c0cc</u>. Accessed 20 June 2023.

Australian Bird Study Association (ABSA) (2020). *Australian Gull-billed Tern Gelochelidon macrotarsa*. In *Bird in the Hand (Second Edition)*, compiled with permission from BirdLife Australia. Available at: <u>https://absa.asn.au/bird-in-the-hand-2nd-edition/</u>. Accessed 13 October 2022.

Australian Institute of Marine Science (AIMS) (2013). *Milner Bay Project: Marine Environmental Survey*. Report prepared for GEMCO – BHP Billiton, March 2013.

Barden, P. (2022). Winchelsea (Akwamburrkba) Island Marine Turtle Nesting 2018-2022 – Final Report. Report prepared for Winchelsea Mining Pty Ltd. Ecological Management Services (EMS), Coolum Beach QLD.

Benthic Australia (2022). Laboratory taxonomy, statistical analysis, results and dot-point discussion for marine macroinvertebrate community composition. Report prepared for CDM Smith. Benthic Australia Pty Ltd, Gladstone, QLD. BirdLife Australia. (2022). *Birds in Backyards: Bird Finder*. Available at: <u>https://www.birdsinbackyards.net/finder</u>. Accessed 14 October 2022.

BirdLife International (2018). *Gelochelidon macrotarsa*. The IUCN Red List of Threatened Species 2018: e.T62026537A132671766. Available at: <u>https://www.iucnredlist.org/species/62026537/132671766</u>. Accessed 8 March 2023).

BirdLife International (2023). *Data Zone: Species search*. IUCN Red List of Threatened Species. Available at: <u>http://datazone.birdlife.org/species/search</u>. Accessed 8 March 2023.

Bray, D.J. (2020). *Fishes of Australia: Manta Ray, Mobula alfredi (Krefft 1868)*. Museums Victoria and OzFishNet. Available at: <u>https://fishesofaustralia.net.au/home/species/2738#moreinfo.</u> Accessed 29 June 2022.

Bureau of Meterorology (BOM) (2022). *Climate Summary Statistics: Groote Eylandt Airport, Site number 014518*. Australian Government. Available at: <u>http://www.bom.gov.au/climate/averages/tables/cw_014518.shtml</u>. Accessed 29 June 2022.

Cagnazzi D. (2010). Conservation Status of Australian snubfin dolphin, Orcaella heinsohni, and Indo-Pacific humpback dolphin, Sousa chinensis, in the Capricorn Coast, Central Queensland, Australia. PhD Thesis, Southern Cross University.

CDM Smith (2023). Winchelsea Island (Akwamburkba) Sediment Transport modelling Report. Prepared for Winchelsea Mining Pty Ltd, June 2023.

Chatto, R., and Baker, B. (2008). *The distribution and status of marine turtle nesting in the Northern Territory*. Technical Report 77. Parks and Wildlife Service, Department of Natural Resources, Environment, the Arts and Sport. Darwin, NT.

Commonwealth Scientific and Industrial Research Organisation (CSIRO) (2023). *Climate Change in Australia: Climate information, projections, tools and data.* Available at: <u>https://www.climatechangeinaustralia.gov.au/en/projections-tools/</u>. Accessed 21 April 2023.

Compagno L.J.V. (1984). *Part 1 – Hexanchiformes to Lamniformes*. FAO Species Catalogue, Vol. 4., Sharks of the World. An Annotated and Illustrated Catalogue of Sharks Known to Date. FAO Fisheries Synopsis. 4(1):1-249.

Corkeron, P, Morissette, N.M., Porter, L., and Marsh, H. (1997). *Distribution and status and of humpbacked dolphins, Sousa chinensis, in Australian waters*. Asian Marine Biology 14: 49-59.

Department of Climate Change, Environment, Energy and Water (DCCEEW) (2023). *Species Profile and Threats Database, Department of the Environment, Canberra*. Available from: <u>https://www.environment.gov.au/sprat</u>. Accessed 14 June 2023.

Department of Environment, Parks and Water Security (DEPWS) (2021). *Threatened Species of the Northern Territory*. Available at: <u>https://nt.gov.au/environment/animals/threatened-animals</u>. Accessed 14 June 2023.

Department of Environment, Parks and Water Security (DEPWS) (2022). *NR Maps Natural Resource Maps Northern Territory Fauna Atlas*. Available at: <u>https://nrmaps.nt.gov.au/nrmaps.html</u>. Accessed 14 October 2022.

Department of Environment, Water, Heritage, and the Arts (DEWHA) (2008). *The north marine bioregional plan bioregional profile*. Canberra: DEWHA. Available from: <u>https://parksaustralia.gov.au/</u>. Accessed 14 October 2022.

Department of Environment and Natural Resources (DENR) (2020). *Northern Territory Offsets Principles*. Northern Territory Government, DENR – Flora and Fauna Division.

Department of Primary Industries (DPI) (2023). *Scalloped Hammerhead Shark*. Available at: <u>https://www.dpi.nsw.gov.au/fishing/threatened-species/what-current/endangered-species2/scalloped-hammerhead-shark</u>. Accessed 19 July 2023.

Dolphin Research Australia (2022). *Dolphin and Whale Species Fact Files*. Available at: <u>https://www.dolphinresearchaustralia.org/learn-about-dolphin-whales/dolphin-whale-species-fact-files/</u>. Accessed 16 June 2023.

eBird. (2023). Lesser Frigatebird Fregata ariel. The Cornell Lab of Ornithology. Available at: <u>https://ebird.org/species/lesfri?siteLanguage=en_AU</u>. Accessed 14 October 2022.

Ecological Management Services (EMS) (2023). Winchelsea (Akwamburrkba) Island Migratory Shorebirds, Coastal Marine and Wetland Birds 2018-2022. Prepared for Winchelsea Mining Pty Ltd, February 2023.

Ferns, L.W. (2016). *Coral communities in extreme environmental conditions in Northern Territory, Australia.* Northern Territory Naturalist, 27, pg. 84-96.

Government of South Australia (2022). Greater Crested Tern *Thalasseus bergi*. Available at: <u>https://www.victor.sa.gov.au/__data/assets/pdf_file/0032/443993/greater-crested-tern-bio-region-fact.pdf</u>. Accessed 13 October 2022.

Griffiths, A.D., Groom, R.A. and Dunshea, G. (2020). *Dugong distribution and abundance in the Gulf of Carpentaria, NT: October 2019*. Department of Environment, Parks and Water Security, NT Government.

Harrison, L.R. and Dulvy, N.K. (2014). Sawfish: A global strategy for conservation. IUCN species commission's shark specialist group, Vancouver, Canada.

Higgins, P.J., and Davies, S.J.J.F. eds. (1996). Handbook of Australian, New Zealand and Antarctic Birds. Volume Three - Snipe to Pigeons. Melbourne, Victoria: Oxford University Press.

Jefferson, T.A., and Rosenbaum, H.C. (2014). *Taxonomic revision of the humpback dolphins (Sousa spp.), and description of a new species from Australia*. Marine Mammal Science 30, 1494–1541. Available at: <u>https://programs.wcs.org/data/doi/ctl/view/mid/33065/pubid/PUB15165.aspx</u>. Accessed 14 June 2023.

Kenyon R.A., Conacher C.A., and Poiner, I.R. (1997). Seasonal growth and reproduction of Enhalus acoroides (L.f.) Royle in a shallow bay in the western Gulf of Carpentaria, Australia. Australian Journal of Marine and Freshwater Research, 48, pg. 335-345.

Last, P.R., and Stevens, J.D. (2009). Sharks and Rays of Australia (Second Edition). CSIRO Publishing, Melbourne.

Limpus, CJ. (2009). A Biological Review of Australian Marine Turtles. Brisbane, Queensland. Queensland Government Environmental Protection Agency. pp 324.

Marchant, S., and Higgins, P.J. eds. (1993). Handbook of Australian, New Zealand and Antarctic Birds. Volume 2 - Raptors to Lapwings. Melbourne, Victoria: Oxford University Press.

Marine Traffic (2023). *Global Ship Tracking – Density Maps*. Available at: <u>https://www.marinetraffic.com/en/ais/home/centerx:136.4/centery:-13.7/zoom:11</u>. Accessed 11 May 2023.

McKenzie, L.J. (2003). *Guidelines for the Rapid Assessment and Mapping of Tropical Seagrass Habitats*. Department of Primary Industries, Queensland.

Northern Territory Government (NTG) (2020). *Northern Territory Climate Change Response: Towards 2050*. Available at: <u>https://climatechange.nt.gov.au/nt-climate-change-response/northern-territory-climate-change-response-towards-2050</u>. Accessed 9 June 2023.

O2 Marine (O2M) (2022). Conservation Significant Marine Fauna Desktop Assessment: Winchelsea Island Manganese Mine Project EIS. Report prepared for CDM Smith. O2 Marine and WA Marine, Fremantle, WA.

O2 Marine (O2M) (2023a). Winchelsea Island Manganese Mine Project: Subtidal Benthic Communities and Habitat. Report prepared for CDM Smith. O2 Marine and WA Marine, Fremantle, WA.

O2 Marine (O2M) (2023b). *Winchelsea Project: Loss Assessment – Benthic Communities and Habitat*. Report prepared for CDM Smith. O2 Marine and WA Marine, Fremantle, WA.

Palmer, C., Parra, G.J., Rogers, T. and Woinarski, J. (2014). Collation and review of sightings and distribution of three coastal dolphin species in waters of the NT, Australia. Pacific Conservation Biology, 20(1): 116-125.

Parra, G.J., Corkeron, P.J. and Marsh, H. (2004). The Indo-Pacific humpback dolphins, Sousa chinensis (Osbeck, 1765), in Australian waters: A summary of current knowledge. Aquatic Mammals 30(1): 197-206.

Parra. G.J., Schick, R. and Corkeron, P.J. (2006). Spatial distribution and environmental correlates of Australian snubfin and Indo-Pacific humpback dolphins. Ecography, 29:396–406.

Pierce, S.J. and Norman, B.M. (2016). *Rhincodon typus*. The IUCN Red List of Threatened Species, 8235(1), e.T19488A2365291. Available at: <u>http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T19488A2365291.en</u>. Accessed on 13 October 2022.

Seashore Engineering (2023). *Winchelsea Island Marine Project Coastal Processes Assessment*. Prepared for CDM Smith and Winchelsea Mining Pty Ltd. May 2023.

Stevens, J.D., Simpfendorfer, C.A., Pillans, R.D., McAuley, R.B. (2008). *Spatial Distribution and habitat utilisation of sawfish (Pristis spp) in relation to fishing in northern Australia*. Report prepared for Department of the Environment, Water, Heritage and the Arts.

Threatened Species Scientific Committee (TSSC) (2015). *Conservation Advice Numenius madagascariensis Eastern Curlew*. Available at: <u>http://www.environment.gov.au/biodiversity/threatened/species/pubs/847-conservation-advice.pdf</u>. Accessed 19 July 2023.

Watson, D.M. (2003). The 'standardized search': an improved way to conduct bird surveys. Austral Ecology. 28: 515-525.

Watson, D.M. (2004). Comparative evaluation of new approaches to survey birds. Wildlife Research. 31: 1-11.

Wilson, S.G., Polovina, J.J., Stewart, B.S., and Meekan, M.G. (2006). *Movements of Whale Sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia*. Marine Biology. 148:1157-1166.

15.4.10 Section 9.10 (Air Quality)

Bureau of Meterorology (BoM) (2022) Climate Summary Statistics: Groote Eylandt Airport, Site number 014518, Australian Government, http://www.bom.gov.au/climate/averages/tables/cw_014518.shtml

Callaghan J. (2011a). Known Tropical Cyclone Impacts in the Gulf of Carpentaria. Bureau of Meteorology, Queensland Regional Office, Brisbane, Australia.

Commonwealth Scientific Industrial Research Organisation (CSIRO) (2023), Northern Territory's Changing Climate, Available: <u>https://www.climatechangeinaustralia.gov.au/en/changing-climate/state-climate-statements/northern-territory/</u>.

Australian Government Department of the Environment, Water, Heritage and the Arts (DEWHA). (2007). Characterisation of the marine environment of the north marine region: outcomes of an expert workshop convened in Darwin., Northern Territory, 2-3 April 2007, DEWHA, Canberra. <u>https://parksaustralia.gov.au/marine/management/resources/scientific-publications/characterisation-marine-environment-north-marine-region-outcomes-expert-workshop-2-3-april/</u>.

Drosdowsky, W. (1996). Variability of the Australian Summer Monsoon at Darwin: 1957-1992. *Journal of Climate*, 9(1), 85-96.

Hunter A, David G, Amir A, Nasir A, von Hippel W, von Hippel F, Angilletta M, and Wilson R, (2018). Bioaccumulation of manganese and its health effects in Anindilyakwa of Groote Eylandt, Australia. University of Queensland Manganese Research.

Katestone (2015). Air Quality Assessment Report for the Eastern Leases Project, Katestone Environmental Pty Ltd, May 2015.

Katestone Environmental Pty Ltd (2023a). Winchelsea Island Manganese Project: Air Quality and Greenhouse Gas Assessment.

Katestone (2023b). Assessment of the Winchelsea Updated Mining Schedule.

Matsuki, M, Gardener, M, Smith, A, Howard, R, Gove, A. (2016). Impacts of dust on plant health, survivorship and plant communities in semi-arid environments. Austral Ecology. 41. n/a-n/a. 10.1111/aec.12328.

National Pollution Inventory (NPI) (2022). Substance Fact Sheets - Manganese & Compounds. Accessed 2 February 2023.

Rodrigues JL, Batista BL, Nunes JA, Passos CJS, Barbosa F. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Science of The Total Environment 2008;405:370-6. https://doi.org/10.1016/j.scitotenv.2008.06.002.

SHIM Consulting. (2018). Report on the Cultural Heritage of Akwamburrkba (Winchelsea Island). Prepared for Anindilyakwa Land Council.

Torres-Agustín R, Rodríguez-Agudelo Y, Schilmann A, Solís-Vivanco R, Montes S, Riojas-Rodríguez H, et al. Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environmental Research 2013;121:39–44. <u>https://doi.org/10.1016/j.envres.2012.10.007</u>.

15.4.11 Section 9.11 (Atmospheric Processes)

Department of Climate Change, Energy, the Environment, Water (DCCEEW) (2023), State and territory greenhouse gas inventories: annual emissions, Canberra, Australia.

Katestone Environmental Pty Ltd (2023). Winchelsea Island Manganese Project: Air Quality and Greenhouse Gas Assessment.

Ndevr Environmental (2023). Groote Eylandt Emission Inventory and Strategy Trajectory, July 2023.

15.4.12 Section 9.12 (Community and Economy)

Anindilyakwa Land Council (ALC) (2019). Annual Report 2018-19. Available at: <u>https://anindilyakwa.com.au/app/uploads/2021/02/ALC_AnnualReport_2018-2019_LR.pdf</u>.

Anindilyakwa Land Council (ALC) (2021) Annual Report 2020-21, Retrieved April 4, 2023. Available at: <u>https://www.transparency.gov.au/publications/prime-minister-and-cabinet/anindilyakwa-land-council/anindilyakwa-land-council-annual-report-2020-21</u>.

Anindilyakwa Land Council (ALC) (2023a). Land Access Permits. Retrieved April 4, 202., Available at: <u>https://anindilyakwa.com.au/land-and-sea/permits/</u>.

Anindilyakwa Land Council (ALC) (2023b). Indigenous Protected Area. Retrieved April 4, 2023. Available at: <u>https://anindilyakwa.com.au/land-and-sea/indigenous-protected-area/</u>.

Anindilyakwa Land Council (ALC) (2023c). Recreation Permit. Retrieved April 7, 2023. Available at: <u>https://anindilyakwa.com.au/land-and-sea/recreation/</u>.

Australian Bureau of Statistics (2018). Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA),
Australia,Australia,2016.Availableat:
https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/2033.0.55.001~2016~Main%20Features~IRSAD~2

0#:~:text=The%20Index%20of%20Relative%20Socio,relative%20advantage%20and%20disadvantage%20measures.

Australian Bureau of Statistics (ABS) (2021a). 2021 Census QuickStats East Arnhem. Available at: <u>https://abs.gov.au/census/find-census-data/quickstats/2021/LGA71300</u>.

Australian Bureau of Statistics (ABS) (2021b). Region summary: Anindilyakwa. Available at: <u>https://dbr.abs.gov.au/region.html?lyr=sa2&rgn=702041062</u>.

Australian Bureau of Statistics (ABS) (2021c). Anindilyakwa (Groote) - Census of Population and Housing 2021.

Australian Bureau of Statistics (ABS) (2022). Counts of Australian Businesses, including Entries and Exits. Available at: <u>https://www.abs.gov.au/statistics/economy/business-indicators/counts-australian-businesses-including-entries-and-exits/latest-release</u>.

Australian Institute of Health and Welfare (2022). Social determinants of health, Retrieved January 18, 2023. Available at: <u>https://www.aihw.gov.au/reports/australias-health/social-determinants-of-health</u>.

Brassard F, Pettit MJ, Murphy BP, Andersen AN (2023). Fire influences ant diversity by modifying vegetation structure in an Australian tropical savanna. Ecology. 2023 Jul 20:e4143. doi: 10.1002/ecy.4143. Epub ahead of print. PMID: 37471112.

Katestone (2022). Winchelsea Island Manganese Project: Air Quality and Greenhouse Gas Assessment. Prepared for CDM Smith on behalf of Winchelsea Mining Pty Ltd.

Miwatj Health Aboriginal Corporation (2023). Angurugu. Available at: https://www.miwatj.com.au/project/angurugu/.

Northern Territory Environment Protection Authority (NT EPA) (2013). Guidelines for the Preparation of an Economic and Social Impact Assessment. Version 2.0 (dated November 2013), NT EPA, Darwin. Available at: https://ntepa.nt.gov.au/__data/assets/pdf_file/0006/287430/guideline_assessment_economic_social_impact.pdf.

Northern Territory Environmental Protection Authority (NT EPA) (2014). Recommendations on the Environmental Assessment and Regulation of Mine Sites. Available at: <u>https://ntepa.nt.gov.au/__data/assets/pdf_file/0008/284741/recommendations_environment_assess_mine_sites.pdf</u>

Northern Territory Environment Protection Authority (NT EPA) (2018). Opportunities and timeframes for community engagement in the environmental impact assessment process: Information for proponents and the public. Available at: https://ntepa.nt.gov.au/__data/assets/pdf_file/0008/284741/recommendations_environment_assess_mine_sites.pdf

Northern Territory Environment Protection Authority (NT EPA) (2021a). Stakeholder Engagement and Consultation – Environmental Impact Assessment Guidance for Proponents. Version 2.0 (dated 6 January 2021), NT EPA, Darwin. Available at: <u>https://ntepa.nt.gov.au/__data/assets/pdf_file/0005/884696/guidance-proponents-stakeholder-engagement-and-consultation.pdf</u>.

Northern Territory Environment Protection Authority (NT EPA) (2021b). Preparing an Environmental Impact Statement: Environmental impact assessment guidance for proponents. NT Government. Available at: <u>https://ntepa.nt.gov.au/ data/assets/pdf file/0009/818217/preparing-an-environmental-impact-statements.pdf</u>.

Northern Territory Environment Protection Authority (NT EPA) (2021c). NT EPA Environmental factors and objectives -Environmental impact assessment: General technical guidance. Available at: <u>https://ntepa.nt.gov.au/__data/assets/pdf_file/0020/804602/guide-ntepa-environmental-factors-objectives.pdf</u>.

Northern Territory Government (NTG) (2022). Groote Archipelago Local Decision Making Agreement – Schedule 3.5 – Health and Wellbeing Implementation Plan. Available at: https://ldm.nt.gov.au/__data/assets/pdf_file/0008/1168973/groote-archipelago-health-and-wellbeingimplementation-plan.pdf.

Taylor J, Gray E, Houle B, Lafferty J, McDougal J and Morphy F (2022). Anindilyakwa Population Trends, Data Governance, and Local Decision Making in the Groote Archipelago: A Report to the Anindilyakwa Land Council, Australian National University, Canberra.

Wolchover, N. (2012). How Far Can the Human Eye See?. Live Science, May 2012, viewed 12 April 2023. Available at: <u>http://www.livescience.com/33895-human-eye.html</u>.

15.4.13 Section 9.13 (Culture and Heritage)

Anindilyakwa Land Council (ALC) (2023a). Land Access Permits. Retrieved April 4, 202., Available at: <u>https://anindilyakwa.com.au/land-and-sea/permits/</u>.

Anindilyakwa Land Council (ALC) (2023b). Indigenous Protected Area. Retrieved April 4, 2023. Available at: <u>https://anindilyakwa.com.au/land-and-sea/indigenous-protected-area/</u>.

Anindilyakwa Land Council (ALC) (2023c). Preserving Culture, Retrieved May 2, 2023. Available at: <u>https://anindilyakwa.com.au/preserving-culture/</u>.

Bland H and Pyne L (2023) ALC Cultural Survey Report Winchelsea Island. A report by the Anindilyakwa Land Council.

Brassard F, Pettit MJ, Murphy BP, Andersen AN (2023). Fire influences ant diversity by modifying vegetation structure in an Australian tropical savanna. Ecology. 2023 Jul 20:e4143. doi: 10.1002/ecy.4143. Epub ahead of print. PMID: 37471112.

Brown, A (2009). Matthew Flinders in the Gulf of Carpentaria. Australian Heritage(3), 33-62.

Burke H and Smith C (2004). The Archaeologists Field Handbook, Unwin & Allen, Sydney.

Bourke P, Brockwell S, Clarke A, Crassweller C, Faulkner P, Guse D and Sim R (2009). Radiocarbon dates from the top end: a cultural chronology for the Northern Territory coastal plains. Australian Aboriginal Studies, 2009.

Byrne D (1983). The five forests: an archaeological and anthropological investigation. National Parks and Wildlife Service of New South Wales, Sydney.

Clegg J (1983). From the study of Aboriginal art to the archaeology of prehistoric pictures. Australian Archaeology, no.16, 87-91.

Cole N.and Buhrich A (2012). Endangered Rock Art: Forty years of cultural heritage management in the Quinkan region, Cape York Peninsula. Australian Archaeology 75, December, 2012.

Cosmos Archaeology (2017). Underwater Cultural Heritage and Seabed Mining in the Northern Territory, with applicability to other marine industries – Strategy for Management. Prepared for Heritage Branch, Department of Tourism and Culture, Northern Territory, Darwin, Retrieved May 3, 2023. Available at: https://ntepa.nt.gov.au/data/assets/pdf file/0011/932267/appendix-6-seabed-mining-nt-underwater-cultural-heritage-cosmos-july-2017.pdf.

Department of Climate Change, Energy, the Environment and Water (DCCEEW) (2023). Australasian Underwater Cultural Heritage Database.

Fagan B (2001). People of the Earth: An Introduction to World Prehistory Prentice Hall.

Flinders M (1814). A voyage to Terra Australis: undertaken for the purpose of completing the discovery of that vast country, and prosecuted in the years 1801, 1802, 1803 in His Majestys Ship the Investigator. London: Libraries Board of South Australia.

Foley, R (1981). Off-site archaeology: an alternative approach for the short-sited, in: Hodder, I., Isaac, G. & N. Hammond (eds.), Patterns of the Past: Studies in Honour of David Clarke, Cambridge, pp. 157-183.

Godwin L (1992). Inside information: Settlement and alliance in the late Holocene of northeastern New South Wales. University of New England, Armidale.

Groote Holdings Aboriginal Corporation (GHAC) (2022). Groote Eylandt Little Paradise Development Master Plan. July 2022.

Hamm G, Mitchell P, Arnold L, Prideaux J, Questiaux G, Spooner D, Stephenson N (2016). Cultural innovation and megafauna interaction in the early settlement of arid Australia. Nature, 539(7628), 280.

Katestone (2022). Winchelsea Island Manganese Project: Air Quality and Greenhouse Gas Assessment. Prepared for CDM Smith on behalf of Winchelsea Mining Pty Ltd.

Lau D, Ramanaidou E, Furman S, Cole I, Hughes T and Hoobin, P (2007). Field Studies of Rock Art Appearance. Final Report: Fumigation and Dust Deposition. Progress Report: Colour Change & Spectral Mineralogy.

Macknight C (1976). The Voyage to Marege. Macassan Trepangers in Northern Australia. Melbourne University Press: Melbourne.

Martins S, Soong B, Wong V, Giunti P, Stevanin G, Ranum L, Coutinho P (2012). Mutational origin of Machado-Joseph disease in the Australian Aboriginal communities of Groote Eylandt and Yirrkala. Archives of neurology, 69(6), 746-751.

Minc L (1986). Scarcity and Survival: The role of Oral Tradition in Mediating Subsistence Crises. Journal Of Anthropological Archaeology, 5, 39-113.

Northern Territory Environment Protection Authority (NT EPA) (2013). Guidelines for the Preparation of an Economic and Social Impact Assessment. Version 2.0 (dated November 2013), NT EPA, Darwin. Available at: <u>https://ntepa.nt.gov.au/ data/assets/pdf file/0006/287430/guideline assessment economic social impact.pdf</u>.

Northern Territory Environment Protection Authority (NT EPA) (2021a). Stakeholder Engagement and Consultation – Environmental Impact Assessment Guidance for Proponents. Version 2.0 (dated 6 January 2021), NT EPA, Darwin. Available at: <u>https://ntepa.nt.gov.au/ data/assets/pdf file/0005/884696/guidance-proponents-stakeholder-engagement-and-consultation.pdf</u>.

Northern Territory Environment Protection Authority (NT EPA) (2021b). Preparing an Environmental Impact Statement: Environmental impact assessment guidance for proponents. NT Government. Available at: https://ntepa.nt.gov.au/__data/assets/pdf_file/0009/818217/preparing-an-environmental-impact-statements.pdf.

Northern Territory Environment Protection Authority (NT EPA) (2022). Draft Environmental factor guidance: Culture and Heritage. Version 0.1 (dated 17 May 2022), NT EPA, Darwin. Available at: <u>https://ntepa.nt.gov.au/__data/assets/pdf_file/0005/884696/guidance-proponents-stakeholder-engagement-and-consultation.pdf</u>.

Seashore Engineering (2023). *Winchelsea Island Marine Project Coastal Processes Assessment*. Prepared for CDM Smith and Winchelsea Mining Pty Ltd, May 2023.

SHIM (2018). Report on the Cultural Heritage of Akwamburrkba (Winchelsea Island). Report prepared for Anindilyakwa Land Council. February 2018.

SHIM (2023). Akwamburrkba (Winchelsea Island) Cultural Heritage Management Plan. Report Prepared for Winchelsea Mining Pty Ltd. July 2023.

Spillett P (1989). Aboriginal - Makassar Relationships: Groote Eylandt. Paper presented at the State Archives Seminar 4 July 1989.

Theden-Ringl F, Fenner J, Wesley N, and Lamilami R (2011). Buried on foreign shores: isotope analysis of the origin of human remains recovered from a Macassan site in Arnhem Land. Australian Archaeology, 73(1), 41-48.

Tindale N (1925). Natives of Groote Eylandt and of the west coast of the Gulf of Carpentaria. Records of the South Australian Museum, 3(1), 60-135.

Wesley D (2014). Bayini, Macassans, Balanda, and Bininj: Defining the Indigenous past of Arnhem Land Through Culture Contact. (PhD), Australian National University.

15.4.14 Section 9.14 (Human Health)

Anindilyakwa Land Council (ALC) (2023h). Quarantine and Biosecurity. Available at: <u>https://anindilyakwa.com.au/land-and-sea/quarantine-and-biosecurity/</u>.

Aschner M, Guilarte TR, Schneider JS, Zheng W (2007). Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology;221:131–47. <u>https://doi.org/10.1016/j.taap.2007.03.001</u>.

Australian Institute of Health and Welfare (AIHW) (2022). Australia's Mothers and Babies: Web Report, AIHW, Canberra.

Carr J, Lalara J, Lalara Ga, Lalara Gw, Daniels B, Clough A, Lowell A and Barker R (2020). Staying Strong Toolbox: Codesign of a physical activity and lifestyle program for Aboriginal families with Machado-Joseph disease in the Top End of Australia. PLoS ONE 16(2): e024431.

Centre for Disease Control (CDC) (2021a). *Ross River Virus*. Centre for Disease Control, Department of Health (NT), last accessed 09 April 2022. Available at: <u>https://nt.gov.au/wellbeing/health-conditions-treatments/viral/ross-river-virus</u>.

Centre for Disease Control (CDC) (2021b). *Barmah Forest virus*. Centre for Disease Control, Department of Health (NT), last accessed 09 April 2022. Available at: <u>https://nt.gov.au/wellbeing/health-conditions-treatments/viral/barmah-forest-</u>

virus#:~:text=Barmah%20Forest%20virus%20(BFV)%20disease.Symptoms%20usually%20settle%20by%20themselves.

Centre for Disease Control (CDC) (2023). Murray Valley Encephalitis (MVE). Centre for Disease Control, Department of Health (NT). Available at: <u>https://nt.gov.au/wellbeing/health-conditions-treatments/viral/murray-valley-encephalitis</u>.

Chen P, Chakraborty S, Peres TV, Bowman AB and Aschner M (2015). Manganese-induced neurotoxicity: from C. elegans to humans. Toxicology Research;4:191–202. <u>https://doi.org/10.1039/C4TX00127C</u>.

Dorman D and Foster M (2014). Olfactory Transport of Manganese: Implications for Neurotoxicity. Manganese in Health and Disease, Royal Society of Chemistry.

Garai P., Banerjee P., Mondal P and Saha N.C (2021). Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. J Clin Toxicol. S18:001. Available at: <u>https://www.longdom.org/open-access/effect-of-heavy-metals-on-fishes-toxicity-and-bioaccumulation.pdf</u>.

Hunter A, David G, Amir A, Nasir A, von Hippel W, von Hippel F, Angilletta M, and Wilson R, (2022). Bioaccumulation of manganese and its health effects in Anindilyakwa of Groote Eylandt, Australia. University of Queensland Manganese Research.

Katestone Environmental Pty Ltd (2015). Air Quality Assessment Report for the Eastern Leases Project.

Katestone Environmental Pty Ltd (2023a). Winchelsea Island Manganese Project: Air Quality and Greenhouse Gas Assessment. Prepared for CDM Smith on behalf of Winchelsea Mining Pty Ltd.

Katestone (2023b). Assessment of the Winchelsea Updated Mining Schedule. Prepared for CDM Smith on behalf of Winchelsea Mining Pty Ltd.

Martins, S., Soong, B-W., Wong, V., Giunti, P., Stevanin, G., Ranum, L., Sasaki, H., Riess, O., Tsuji, S., Coutinho, P., Amorim, A., Sequeiros, J., and Nicholson, G.A. (2012). Mutational origin of Machado-Joseph disease in the Australian Aboriginal communities of Groote Eylandt and Yirrkala, Archives of Neurology, 69(6): 746–751.

Machado Joseph Disease Foundation (MJDF) (2012). MJD Foundation Input into the Anindilyakwa Land Council's Strategic Plan for Disability Care, MJDF, Angurugu.

Northern Territory Department of Health and Families (DHF) (2005), Guidelines for Preventing Mosquito Breeding Sites Associated with Mining Sites. Available at: <u>https://hdl.handle.net/10137/1029</u>.

Northern Territory Health (2022), Winchelsea Island and Groote Eylandt Biting Insect Assessment. Medical Entomology - Centre for Disease Control, Darwin.

Northern Territory Environmental Protection Authority (NT EPA) (2021a). Stakeholder Engagement and Consultation – Environmental Impact Assessment Guidance for Proponents.

Northern Territory Environmental Protection Authority (NT EPA) (2021b). Preparing an Environmental Impact Statement: Environmental impact assessment guidance for proponents.

Northern Territory Health (NT Health), Aboriginal Cultural Security Framework 2016 to 2026, Available at: <u>https://digitallibrary.health.nt.gov.au/prodjspui/bitstream/10137/730/8/Northern%20Territory%20Health%20Aborig inal%20Cultural%20Security%20Framework%202016-2026.pdf</u>.

National Pollution Inventory (2022). Substance Fact Sheets - Manganese & Compounds.

Pettit, W. and Copley, N. (2017). Groote Eylandt exotic mosquito survey report. NT Department of Health, Darwin.

Russell, R., and Kay, B. (2004). Medical entomology: changes in the spectrum of mosquito-borne disease in Australia and other vector threats and risks, 1972-2004. Australian Journal of Entomology. Vol. 43. No. 3, pp. 271-282.

Taylor J, Gray E, Houle B, Lafferty J, McDougal J and Morphy F (2022). Anindilyakwa Population Trends, Data Governance, and Local Decision Making in the Groote Archipelago: A Report to the Anindilyakwa Land Council, Australian National University, Canberra.

Trott LA (2012). Milner Bay Project: Marine Environmental Survey. Report produced for GEMCO – BHP Billiton. Australian Institute of Marine Science, Townsville. 204 pp.

United States Environmental Protection Agency (US EPA) (2023). Health and Environmental Effects of Particulate Matter. Available: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm.

Whelan, P. I. (1995). Malaria and the receptive area of the Northern Territory, Medical Entomology Branch, Department of Health and Community Services.

Whelan, P., Marianos, A., Hayes, G., and Kraus, V. (1997a). Ross river virus transmission in Darwin, Northern Territory, Australia. In "Arbovirus Research in Australia". Vol. 7. Proceedings of the Seventh Arbovirus Research in Australia Symposium, and Second Mosquito Control Association of Australia Conference, 1996. Pp. 337-345.

Whelan, P.I. (1997b). Problem mosquito species in the Top End of the NT – Pest and vector status, habitat and breeding sites, Medical Entomology Branch, Department of Health and Community Services. Trachoma. Northern Territory Government.

15.5 Section 10 to 14

AH Hunter, GK David, AF Amir Abdul Nasir, W von Hippel, FA von Hippel, M Angilletta, and RS Wilson (2022) Bioaccumulation of manganese and its health effects in the Anindilyakwa of Groote Eylandt, Australia.

Baker, A. (1990). Whales and Dolphins of Australia and New Zealand: An Identification Guide. Page(s) 133 pp. Wellington, New Zealand: Victoria University Press

Bannister, J.L., C.M. Kemper & R.M. Warneke (1996). The Action Plan for Australian Cetaceans. Canberra: Australian Nature Conservation Agency. Available from: <u>http://www.environment.gov.au/resource/action-plan-australian-cetaceans</u>.

Bejder L, Samuels A, Whitehead H, Gales N and others (2006) Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv Biol 20:1791–1798

Braulik G, Natoli A, Kiszka J, Parra G, Plön S and Smith BD (2019) Tursiops aduncus. The IUCN Red List of Threatened Species 2019: e.T41714A50381127. <u>http://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T41714A50381127.en</u>.

Brown, A., Kent, C., Smith, J and Marley, S. (2017). Relative abundance, population genetic structure and passive acoustic monitoring of Australian snubfin and humpback dolphins in regions within the Kimberley, WAMSI Kimberley Marine Research Program Final Report Project 1.2.4. Available at: https://www.researchgate.net/publication/319236723_Relative_abundance_population_genetic_structure_and_pass ive_acoustic_monitoring_of_Australian_snubfin_and_humpback_dolphins_in_regions_within_the_Kimberley.

Carvalho CF, Menezes-Filho JA, Matos VP de, Bessa JR, Coelho-Santos J, Viana GFS, Argollo, N, and Abreu, N (2014). Elevated airborne manganese and low executive function in school-aged children in Brazil. NeuroToxicology 2014;45:301–8. Available at: <u>https://doi.org/10.1016/j.neuro.2013.11.006</u>.

D'Anastasi B, Simpfendorfer C and van Herwerden L (2013) Anoxypristis cuspidata (errata version published in (2019). The IUCN Red List of Threatened Species 2013: e.T39389A141789456. Available at: <u>https://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T39389A141789456.en</u>. Accessed June 2022.

Department of Environment and Natural Resources (DENR) (2021). Land clearing guidelines: Northern Territory Planning Scheme. Available at: <u>https://nt.gov.au/___data/assets/pdf_file/0007/236815/land-clearing-guidelines.pdf</u>.

Dunn, J. L., Buck, J. D. and Robeck, T. R. 2001. Bacterial diseases of cetaceans and pinnipeds. pp. 309–335. In: CRC Handbook of Marine Mammal Medicine, 2nd ed (Dierauf, L. A. and Gulland, M. D. eds.), CRC Press, Boca Raton

Fair, P. A., and P. R. Becker. 2000. Review of stress in marine mammals. Journal of Aquatic Ecosystem Stress Recovery 7:335-354.

Farmer, A.M. (1993) The effects of dust on vegetation - A review. Environmental Pollution 79 (1993) P 63-75.

Haynes, D., Carter, S., Gaus, C., Muller, J. & Dennison, W. (2005). Organichlorine and heavy metal concentrations in blubber and liver tissue collected from Queensland (Australia) Dugong (Dugong dugon). Hutchings, P. & Haynes, D., eds. Marine Pollution Bulletin. 51:361-369. Elsevier, Oxford, England.

Katestone Environmental Pty Ltd (2015). Air Quality Assessment Report for the Eastern Leases Project

Katestone Environmental Pty Ltd (2023a). Winchelsea Island Manganese Project: Air Quality and Greenhouse Gas Assessment.

Katestone (2023b). Assessment of the Winchelsea Updated Mining Schedule.

Kessel ST, Elamin NA, Yurkowski DJ, Chekchak T, Walter RP, Klaus R, et al. (2017) Conservation of reef manta rays (Manta alfredi) in a UNESCO World Heritage Site: Large-scale island development or sustainable tourism? PLoS ONE 12(10): e0185419. Available at: <u>https://doi.org/10.1371/journal.pone.0185419</u>.

Lynch, B.T. and Wilson, (1998). Land Systems of Arnhem Land. Report No. R97/1. Natural Resources Division, Department of Lands, Planning and Environment.

Marsh, H., H. Penrose, C. Eros & J. Hugues (2002). Dugong Status Report and Action Plans for Countries and Territories. Early Warning Assessment Reports. United Nations Environment Programme, Nairobi.

Marsh H, O'Shea TJ and Reynolds JE (2011) Ecology and conservation of the Sirenia: Dugongs and manatees (No. 18). Cambridge University Press.

Marshall A, Barreto R, Carlson J, Fernando D, Fordham S, Francis MP, Herman K, Jabado RW, Liu KM, Pacoureau N, Rigby CL, Romanov E, and Sherley RB (2019). Mobula alfredi. The IUCN Red List of Threatened Species, e.T195459A, 19.

Marshall AD, Dudgeon CL, Bennett MB. 2011b. Size and structure of a photographically identified population of manta rays Manta alfredi in southern Mozambique. Marine Biology 158:1111-1124.

Martineau, D. 2007. Potential synergism between stress and contaminants in free-ranging cetaceans. International Journal of Comparative Psychology 20:194–216.

Matsuki, M., Gardner, M., Smith, A., Howard, R. K., and Gove, A (2016) Impacts of dust on plant health, survivorship and plant communities in semi-arid environments. Austral Ecology

Migaki G, Valerio MG, Irvine B, Garner FM (1971) Lobo's disease in an Atlantic bottle-nosed dolphin. J Am Vet Med Assoc 159:578–582.

Munson, T.J., Ahmad, M. and Dunster, J.N. (2013). Geological and Mineral Resources of the Northern Territory: Chapter 39 Carpentaria Basin. In: Ahmad, M. and Munsen, T.J. (2013). Geology and mineral resources of the Northern Territory. Northern Territory Geological Survey, Special Publication 5.

Nasir et al., 2017. Manganese accumulates in the brain of northern quolls (Dasyurus hallucatus) living near an active mine. Environmental Pollution 233 (2018) 377-386.

National Pollution Inventory (2022). Substance Fact Sheets - Manganese & Compounds. Accessed 2 February 2023

Northern Territory Environmental Protection Authority (NT EPA) (2022). NT EPA Environmental factors and objectives -Environmental impact assessment: General technical guidance. NT Government. Available at: <u>https://ntepa.nt.gov.au/ data/assets/pdf file/0020/804602/guide-ntepa-environmental-factors-objectives.pdf</u>.

Palmer C, Baird RW, Webster DL, Edwards AC, Patterson R, Withers A, Withers E; Groom R and Woinarski, JCZ (2017) A preliminary study of the movement patterns of false killer whales (Pseudorca crassidens) in coastal and pelagic waters of the Northern Territory, Australia. Marine and Freshwater Research, 68(9), 1726–. Available at: https://doi.org/10.1071/mf16296.

Palmer C, Fitzgerald P, Wood A, Harley S and McKenzie A (2009) False Killer Whales Pseudorca crassidens: regular visitors to Port Essington and Darwin Harbour in the Northern Territory, Australia. Northern Territory Naturalist. 21:49-53.

Palmer C, Parra GJ, Rogers T and Woinarski J (2014b) Collation and review of sightings and distribution of three coastal dolphin species in waters of the NT, Australia. Pacific Conservation Biology, 20(1): 116-125.

Parra, G.J. (2006). Resource partitioning in sympatric delphinids: Space use and habitat preferences of Australian snubfin and Indo-Pacific humpback dolphins. Journal of Animal Ecology. 75:862-874.

Purves, P.E. & G. Pilleri (1978). The functional anatomy and general biology of Pseudorca crassidens (Owen) with a review of the hydrodynamics and acoustics in cetacea. Investigations on Cetacea. 9:67-230.

Reif JS, Peden-Adams MM, Romano TA, Rice CD, Fair PA, Bossart GD (2008) Immune dysfunction in Atlantic bottlenose dolphins (Tursiops truncatus) with lobomycosis. Med Mycol 47:125–135

Reiss A., Jackson B., Gillespie, G., Stokeld D. and K. Warren (2015). Investigation of Potential Diseases Associated with Northern Territory Mammal Declines. Final report for NERP Project 4.1: June 2015

Rodrigues JL, Batista BL, Nunes JA, Passos CJS, Barbosa F. Evaluation of the use of human hair for biomonitoring the deficiency of essential and exposure to toxic elements. Science of The Total Environment 2008;405:370–6. Available at: <u>https://doi.org/10.1016/j.scitotenv.2008.06.002</u>.

Ross GJB (2006) Review of the conservation status of Australia's smaller whales and dolphins, Australian Government, Canberra.

Seashore Engineering. (2023), Winchelsea Island Manganese Mine Project - Coastal Processes Assessment, Western Australia, Perth.

Smith J, Brown AM, Salgado Kent C, Marley S, Allen SJ, Thiele D, Bedjer L, Erbe C, Chabanne D (2016) Relative abundance, population genetic structure and passive acoustic monitoring of Australian snubfin and humpback dolphins in regions within the Kimberley. WAMSI Kimberley Marine Research Program. Final Report. Project 1.2.4.

Stacey, P.J. & R.W. Baird (1991). Status of the False Killer Whale, Pseudorca crassidens, in Canada. Canadian Field-Naturalist. 105(2):189-197

Stevens, J.D., R.D. Pillans & J. Salini (2005). Conservation Assessment of Glyphis sp. A (Speartooth Shark), Glyphis sp. C (Northern River Shark), Pristis microdon (Freshwater Sawfish) and Pristis zijsron (Green Sawfish). Hobart, Tasmania: CSIRO Marine Research. Available at: <u>http://www.environment.gov.au/coasts/publications/pubs/assessment-glyphis.pdf</u>.

Stobutzki, I.C., J.M. Miller, D.S. Heales & D.T. Brewer (2002). Sustainability of Elasmobranches Caught as By-catch in a Tropical Prawn (Shrimp) Fishery. Fishery Bulletin. 100:800-821.

Torres-Agustín R, Rodríguez-Agudelo Y, Schilmann A, Solís-Vivanco R, Montes S, Riojas-Rodríguez H, Cortez-Lugo M and Rios C (2013). Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environmental Research 2013;121:39–44. Available at: <u>https://doi.org/10.1016/j.envres.2012.10.007</u>.

United States Environmental Protection Agency (USEPA). 1998, Western surface coal mining, AP-42,

United States Environmental Protection Agency (USEPA). Office of Air Quality Planning and Standards.

Walker, T.I. (1998). Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries. Marine and Freshwater Research. 49:553-572.

Woinarski, J.C.Z., Hill, B.M, and Ward, S. 2017. Recovery, Management and Monitoring Plan for the Brush-tailed Rabbitrat Conilurus penicillatus. Department of Environment and Natural Resources, Darwin.

Woinarski, J.C.Z., Burbidge, A.A. and Harrison, P.L. (2014). The Action Plan for Australian Mammals. CSIRO Publishing.

Wolchover, N. (2012). How Far Can the Human Eye See?. Live Science, May 2012, viewed 12 April 2023. Available at: <u>http://www.livescience.com/33895-human-eye.html</u>.